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GAS JIIT$!

By S. Ckaplygin

-,,1NTRODUC T O~Y R“ENLARKS

‘In his memoir Helmholtz (reference 1) showed the
possibility of rnat.hematical analysis of those types. of
flow of incompressible liquids that are chatact.erized
by the formation of go-called rays (Strahle) or jets
within the region at rest. Following the work of
Helmholtz a rather large number of investigations,
devoted to the same problemr appeared in foreign and
Russian scientific literature- At present the fully
worked out Joukowsky method (reference 2) permits the
solution of any. probl,~m on steady, irrotational flow
of an ideal liquid under the following conditions:
first, the fluid throughout moves parallel to a certain
plane, the flow being bounded by plane walls perpendic-
ular to this plane, and secondly, the motion takes place

in the absence of external forces. (The same conditions
are imposed in almost all problems of this type.)

The analogous problem for an ideal gas has hardly
been touched upon. The author is familiar with only one
paper which deals with gas j’~t.$;namely, the one by P.
Molenbroek (reference 3), Molenbroek set up the differ-
ential equations on which the problem of gas jet flow
depends and gave certain particular integrals of thqse
eqnatiops; these equations, however, hardly corresp~nd

even to the theoretically conceiveil motion of the gas.

Tn the present paper a method is presented wit;h the
aid of which it is possib~e, in many cases,, ~.g ,f&Q&..&&e,.
soluti9q of,,a.,giren,pro.b-lqern”’titi’”’t’~~ ‘f”low’-;~’”anideal gas, ...
-----.-.-—---- —.—---—-—- ——___ ~ --—-~—

*Scientific Memoirs. Moszow Universi$y~ 19’02’P
pp, 1-121.
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Here it is necessary to impose all the conditions which
are assumed in the analogous, problems on ,ap+~n,compr.e-ssible
,,li,quid.,..aspreviouslym -eh’tioned by ’Joukowsky. (reference 2).
But,,,in addition, the applicability ‘of the analysis here
developed iS further restricted by the special requirement .
that the velocity of~the gas particles must nowhere ‘ex-
ceed the velocity of sound for the particular physi~al
state of the gae at a giv”en point (locaa vel~ci’.tY“@f
sound) _ Corresponding restrictions are likewise imposed
on the limits within which the pressure may vary, If
this additional condition is not satisfied, stable ”motion.
apparently is not possibl~,, It is assumed, however, that
with the aid, of a certain hypothesis, stated in this
paper, the problem can be analyzed also for the case
where the additional condition is not satisfied. The
mathematical treatment of this problem, however, is left
to another paper.,,

A brief summary of the, contents of this paper is
presented here.

In part’I the differential e~uations of the problem
of a gas flow in two dimensio~s b derived and the partic- K
ular integrals by which the problem on jets is solve&. are
given. Use is made of the sahe independent variables as
Molenbroek used, but it.is found to be more su~table to
consider other functions. The stream function and veloc-
ity potential corresponding to the problem are given in
the form of seriesm

The investigation of the convergence of “these series
in connection with certain properties of the functions
“entering them forms the subject of part II.,

In part III the problem of the outflow of a gas from
an infinite vessel wit,h plane walls is solved.,

In par? IV the impact of a gas jet on a plate is
considered and the ,limit,ing case where the jet”expands
to infinity ~chan~i~..into a“gas flow is taken up in more w
detail, Thi’sfialso solved the equivalent problem of the .
resistance of a gaseous medium to the motionof a plate.

..>!., .“--”-=-‘“,., ,.. .
,,. ~fnally,’ inpa+t””’V1’ “’”’’”’”’”an approximate methpd is yre-
sented that permits a simpler solution of the.problem of
jet flows in the case, where the velocit~es, of the,.gas
(velocities ~f the particles in th? gas) are not very
large,

... :
.....-. __
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A number of supplementary notes are appended at the
end of this report, the second of which establ,$shes...a
~elation between the ana’l~si;i”o“~-part””V with certain
problems in the theory of minimal surfaces.

A further interesting remark may be noted here:
The results obtained in parts III and IVg at least
qualitatively, agree sufficiently well with test results,
although the experimental investigation of the”phenomena
accompanying the jet ,formation was conducted under con-
ditions very different ~rom those. assumed in these theo-
retical investigations.

The principles of the method with its application
to flows presented here were briefly communicated to
the” Noseow Mathematical Society at the beginning of 1896-
A “uOre detailed presentation was made at the eleventh
session of the experimental scientists and doctors in
1901.

In concluding these introductory remarks deep
appreciation is expressed to E- A. Bolotov for his kind
help in proofreading the manuscript.

. ,. ,,.
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“GEIVER”ALPRIW(YJPLI?S $.)3 THE METHOD”OE’ INVESTIGATION

An infinite’ mass @ ~ perfect gas cuntaine~ between
two parallel p3apes is a$$wxped-and, in addition, bounded
by certain cylindrical surfaces perpendicular to these
planes. one of $he la$itpr is assuma,d as the coordinate
plane XY, Let the gas be In stabilized motion and let
the direction of the velocity, throughout be pa~al~el to
XY, The effect Qf external forces will be neglected.and
it will be, assumed that the velocities have a’potentiala
Since it is desirable to avoid vorticity formation, it
is necessary to consider the pressure as a function of
the density. It is c~gvenient to take

P=
kp~

(1)

and thus assume an adiabat$c process. .

The magnitude Y equal, for atmospheric air, to
164025 (reference 4) is the ratio of the specific heats.
It is preferred to consider the motion as constant heat
process in view of the small heat conductivity and radia-
tion of the gas particles. Because of this the adiabatic
process at large velocities appears most closely approach-
ing the true conditions. In any case, the result of this
analysis must be considered as a first a-pproxima.tion for
the reason that no account is taken of the connecting
chains between’ the particles and the resulting viscosity
forces~ friction at the wallsy and so forth, factors
whiob, in the case of gas flows, are possibly of greater
effect than in the case of liquid flows,

Under the foregoing assumptions the velocity potential

Q is a function of x and y and, for the components of
the velocity u, v, the expressions

.=9!
,.., ax’

v,= g ,.. ,

by

With the density qf the gas denoted by p “’:$hecon-
dition of continuity is written

. — A..

~A—
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!l!heBernoulli law in this problem may, with the aid
of equation (1), be reduced to the relation

where

V2 = U2+V2,

tile density at the
where V = O.

Y--l
k~~o 1

a
‘--Z7’

$
= G’ Po=~onstant (41) Z

point of the gas is evidently p.

For briefness,

so that

$
P = po(&T) (5)

IIquation (3) indicates the existence of a.function
$ dotermineci by the equations

(6)

.,,,.,, .,.. ,.,., --
I?rom equations (2) and (6] with the. aid of equation

,’

(S) a relation is obtained between the functions qy and
$ given by the formulas

III I 11111Imllmll I I Hmmm I II I II Ill 1111 1 I lllm~ I

,,
I I I m-mm I I m~~ll I Illlllllllmlsmml (
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1““””‘-””
=(l+~s “

.5.- ‘ ~~~ -

,... — . .

–.–- . ..- .
. . . . . ...--.’..

(7)

“*=

, b? -
(l-T)p ~ ,

!l!hefunction ~ represents the stream function,
tile equation $ = ($onstant ~eing the equation of a stream- -
linem By assigning successive constant values Cl and
Ca to the latter, it is readily” shown that (Cl-> Ca)po
expresses the mass of gas per second flowing through a
cross section of the jet between the streamlines.

-W= cl, 4J =(32

Equations (7) are transformed by taking V, $, for
the independent variables and considering x, y as
functions of ~ and $. The relations

are readily obtained where

Yrori the fa,regoing equations.
of tk~e velocity is obtained:

1 ax 2,.,—..
(?

~z = ;;,

Equations (7’) become

the reciprocal of the square

by 2 ‘““()‘G
,- , . ,.
(7f)

.—.——.———.—. . -.....-...—.._——.———- .. .——. ~
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dx Ch/
(l–T)P~=@l-@=-*O

(8)
. It is necessary to consider the derivatives with

respect to q and $ of the Wariables t = Ya/2a and

the inclination of the velocity to the x = *xi. Is $vl-
Va with respect todently 9. Differentiation of

results In ,.,-
d(v’) ~v4&d%’dya~ “

T
=—-.

(
.—

)ay d+!+q ~ ‘

or, “otithe basis of equation (8)

Differentiation of 0 with

a2

or

—

These relations lead to the SqwtZ@*d’!l

“dlgv’
-=2(1+-P:.
d+ “(9)

Turther

whence, w~th the aid of equatl:on (8)t there i. ;obt’kitied

. . . . . .
f== T’Yl-+p ‘? +~ ‘%);

. “,.?+,WJ w! w+.
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By making the final reduction in the formula for “36 -
3iJ

and
?

substituting T for V2 in relation (9) gives the
relations:

(10)

Pa~sing next to the independent variables ?, 6 and
ta!cfng ~ and W a% functions of the former gives the
formulas required:

(11)

,,.,.

{

-s 8$’
* ‘2T(~_T) ) + 4-(2p+.l)T

37 2T(l-T)(l-T~p$~ = O (12)

/

~~11~ and (121 constitute a solution of the——- ~.— .-.-—.--— - -——
~low of a gas if the range of ~~bz<s--~,—.. . — -. -- —- . -. .— —--—
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correspond in~”to the flow is known if the values of-- —.-+ .. ~__ —---- —
~ ~~’the boundar~s~~a~l~=es are glven~ ~: everywhere-— ———. -—-. --—-- -— ——— .—.

2? e the function w------ ----- ---- -fggether with--- --------
its first derivatives

--—- —.-
‘is finite—y- ----- sin@=~valuedL -- __._.-J. —- -.----.---L and coa-

tznuous an~-~-fi~~ii’ltud’e ~ does not, exceed----=.- --- --- l&@~—.---— . ---—-
~zl~ oecomes zero only at “certa~;—~~nts of the contour.

-—_-
~he -y:_____ ----

9, regi”o~$~l~b<~<~~~der~~–~i$Zl~-~o~~~~<~. ..
and closed,.

In order to show that the function V i’s fully
defined for the given conditions it will ‘be proved that. “

. the contrary is pot true. Let it le assumed that there.
exi st two functions $1 and $2 satisfying all these
conditions., It will be shown that ~1- 42 = 0. The.
function $3 = $1- $2 ever~where in the given region of ~
values ‘f, 0 is finite -d continuous, satisfies equa-
tion (12), and at the boyndary of the region assumes the -
value:’zero, J’iultipl’ythe left side of equation (12) by . .
$dTde and in$egrate within the limits of the T, e re-
gion: If the result of ,the integration is denoted by 1,
substituting $3” for ~ there is readily obtained:

.’

. .
where’ the double integral extends-over the entire T, e
region, once over its contour.
$3 =

Since on the contour
O the equation I = O can be true only if the

double integral becomes zero, Under the above-indicated
conditions, however, the function under the integral sign
may be either positive or zero, It is clear that the zero
value milst he t.ake’n,and this leads to the equations

.’w_3=o a*3
= O and $3 =’ constant = (1 I

h? : x’

as was required. to be proved,,.

I

~.

I
!’

\
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Among the requirsd conditions for the existence of
a definite solution it has been men~i.oned that throughout
the region of gas fl,ow the inequality.

..

1.
. . T<-—

2p+l

must be satisfied. The significance of this requirement
will be explained. ~g.i:g to formulas (4) and (4~) for

. .
7

Ta<l”= -- = -— = 0..17
2a 2~+1 ~

give”s

where

whence

T2 ~ k“fp
y– 1

or8 making use of relat”ion, (1) gives

/. “2
‘v .JLy

P
$

(13)

(13’)

Thus the restriction imposed on ~ is equivalent
to the requirement that the-velocity of the gas nowhere—— ___ ___ __ ___ —.—___
exceed the velocity ~-~ p~~p.agetion QZ -sound for-the~=-_=_ --— -.-——--~——.
particular physical condit.i~ns at the point under con-

sideration. , It is supyosed that’ such ~’elocities$ at
least for established flows; cannot even exist- .(See also
reference 5$ and the authors cited ly him.)

The liiiting value T = l/[2p+l) establishes “also.
the limits within which the pressure may vary in the region

\ ,.

,

f. ‘
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. occupied. by the movin’g gas “rnass.-!ihus,”if the vafiable
T is everywhere. less than its liniti-hg value, then

.’,

But $7’= Y/(Y-l) = 1’+ ’$; hence-’. ‘ .
●

:; “%%)?+’=(3’”=“53;$:1’8’
i.f it is assumed .that Y e$ti~ls iippro.ximately 1.40.

Yhe author turns to the derivation of other’very
important theorems with regard to the rnoti~.nun~er con-

sideration to show, in the first place, that @ XELAQUZ
Zotential ~,-------------- considered as a function of the coordinates,——.-—- — . -------- — --- .--—
can nowhere within the flow reg~hg,

-- —

—- $ —w— —- --— ~. have either a maXimum--- -— ---- --—- . -——
,~~ a minimumf .To prove this, It might be possible to con-
sid~r-~~y~~he following cond$tion, ,If a point existed at
which q) had a maximum; the”rewould “then have to exist
about it a closed curve on which q haa a constant value
less thatithe makirnum. In such”case the gas wouldflow . ,
through this curve from outside to inside the area bounde~ .
by it. The mass, hounded by the curve would inorease with
time and the”motion could not he-steady. Bysimilar con- -
sideratiob the assumption of a minimum of Q is” likewise
shown to be impossible 3ut since the theorem on the func~
tion ~ holds also “for the function ~,

-.. .--—p .- -.. —---
ariain view of--— ---— ---- .— .-. —.-—-- --- -- --— .-

~&~ fact that it is true for the coordinates 24 ~,-— —. — .. —— — -— ——--.;-----
regarded as functions of.$~:’~n~pen~~g~ variables -c-- -- .-
and ~, fio~r proof applicable ~ all these functions ‘

-—— . ..--—---

%fio ,will be givene

. . .

. .

At a cert’a’in.point A of the flOW region let cp have
a maximum (or minim~m), About this point take a closed
curve (C)’ along which cp $‘mdintains ‘a’constant ‘value k, less

.
.
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than the
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hence .also the assumption of a maximum cp. (Xf the’ author >
assumed a tiiniznuzn$the sign$ in the stibstituttonswould
have been reversed, and the function F chosen so that
everywhere .F{q) and $“~(cp)c 0, and again would have
arrived at the impossibility of (a)..,

!T!hesame consideration proves the correctness of the
derived theorem also for the other above-mentioned con-
ditions, formulas (8), being required for functions
Yc(q,$) and Y(v,W).. . .

., With the aid of equqtion [10) it is not difficult
to p-rovea similar theorem also for the func”tion 7 and
therefore the velocity of the flow likewise cannot have....y — ..-——. -— --—
a maxzmum TE”&7~~5~ ~~ ~~$i;~IZS (ftIJl;. ---.—- — a minimum n=
exist but the minimum value of ~“-

. -------- .
1s zero.—-— --- .- -— ~ In orde~ to

prove this the following equ~ion i~c~~~~ructea ~n the
basis of formulas (10)

Assume that there exists in the q, W plane a point
where T has a maximum or minimum, !l?ak.e,shout this
point,,a curve (C: with constant value of T; multiply ~
the equation for by a c$rtain function f(T) and
integrate the left part over the area bounded by the curve
(c)., Integrating liy..parts yields the relation:”

‘P

.’

In quite the same’manner, as “in t~.e above-considered -
cases, the impossibility of this relatton will be proved,
It is readily seen,. however; that the proof will be valid- .

< 1only for the condition: T = _ within the region of
2p+l

—— -— .- -— --
.

f.low.tand this condition has already been assumed and its<---
. .

a
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physical meaning explained. The case ? = O is itself
excluded f~om.the range of applicabi~ity of the alove “

“ considerations and’for the following reason:. At the
point 7 = 0, if $his point lies within the flow mass, the
streamlines.meets It is readily seen that in this case
the coordinates ‘? y canntitbe single-valued functions
Of Qt *; the latter region will.be represented, at “least,
by a two-sheet Riemann surface not -assumed in setting-up
the double integrals that figure in theseconsicleratioris. ‘ “
~t is easy to show, however, without,any formulas$ that
the value 7 = O is the minimum 7$ Yor thi$, it is ~
sufficient to remember that 7 = (u2, + va)/2~, and,
since this function is everywhere positive, the value
zero is actually ,its minimum- In what ~ollows, only
such gas flows fqr which the critical pdint T y O i lies
on the bounding contour of the T,,Q region and the
surface of the q,$ region,a single sheet surface,wil,l.
be considered,

BY setting up formulas (10) the differential equation:

. .

and applying the ‘above-described device it is found “that
the functiou ~-{-co$$~cann’othave either a maximum or’s--- _________. -y— ~— .—-.-.— — —.—. -—- -- .
minimum .Lntze same way the.absence “of’tusring values---—-.-*
also for the fvn;:tions cp,$, of ~ and 6, if the
latte??are taken a::the iridependentvarialies is estab-
lished. FOX this purpose fcrmulas (31) n’J.stbe used.

From the foregoing theorems }roved it,is clear that
in the q> $ regicn there cauriote~tst ciosed curves along
which the fuacti~ns x$ y, 7, 6 maintain constiantvalues;
all such curves must end at the boundary”of tne region, .
Similiar considerations hold for the ‘i, e region and
the curves y = constant and $ = constant,

.-
‘In appl.ica~ion only such pro~-~ems as correspond to

aT,Q rcglo~ bo~iadedby concentric c~rcles and the
straight line Se:zment$ paSSing.Zhr9Ugh tbeiz centers VTill

be kept in L?ct.<- The rnagnidutes T: Q will Ie taken as
the po:ar cofri~inates of the p~ints of their region and
the commbn ceutsr. of the boundary curves will be the pole
of the coordinate.se, .
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I?orthese conditions from” the theorem on-the im-
possibility of a maximum or minimum of 7(qy*) eh+)
it may be concluded that inner points of the T, 0

c region correspond to inner points of the ~, ~ region, .
It may be noted further th’atby making use of the ab- ~
sence of a maximum or a minimum of the function V (T, (j);
there can again beiobtained the theorem already proved
on the uniqueness of.the fuuction if it is continuous
within the ‘T, e region and is flivenon its boundaries.
The series of iis boundary values ~, Q general,_also-— ——— — y ------- —
~ discontinuous,

——
--.-——

A problem on the flow of a gas will now be considered.
Assume as known the corresponding contour of the region
of the variables =T, Q satisfying the condition T <~:.
l/(2@ + 1): finally W oa the contour is known. If it
is possible, from cqrtain ;considerations, toconcltide
that the given problem has a solution an’dif a continuous
function ~’ satisfying the given conditions is found,
then this function will actually represent the stream

.function, since no other is possible. - be’cause of the
theorem on the uniqueness of the sc)lutiofiof the differ-
‘ential equations of the same type as-the equations for
the function ~. : ($.eealso reference 6;)

Side co?s$derationsi as to the existence of a solution,
are not, however, always a priori possible, *%nd such %.&ing .
the case, having obtained a function $ and through it ~,
it may b.e questioned as to whether these particular func~”-
tions give”a possible solution of the pro%lem. . In order
to remove such doubt it is necessary,to show each time
that the formulas for “9 and * determine T and a as
single-value functions of x and y.

h order” to clarify this point, the reasoning will
be as follows. Let a single-valued function ~(?, 0) be
defijled;then from the formula

bx axiip”~xa~—= ——-i-—. —
bT apa7

~,ntisimilarly on the basis of

ait N

relation (8) ‘and formulas
.
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and similar ones, u

Thus the de$ivatires 6$ .x(T, 6) ‘and y(~,fl)are
determined as ~~n 3.e-valued functions of T and (1.
If the Jacobian, ?%, &)/(:,. g).-.-— .— is not zero within t~-- -— —.-
~.ggion of 7, & ~hese, as is known axe def~~-~s-___ t .— ------- —--- -- -- -..
single-valu~d functions of But I--- zsg~ ...-0—-—- —~.~ --

b and from equations (8) anti(11) the relatiws “ ‘

from which it-is clear “that, if everywhere 7 ~ 1/(23+1),
the equation (x,y)/( 7,6) = O is possible oniy if.both
partial derivatives of the function $ ares imultaneously
zero, l!hiscan happen at a singular point of one ,of the
curves w = constant i’fsuch singalar point on *he curve
exists. In genekal, to deny the exist’en’ceof such points
is impossible, but it can be stated that curves y(’f; e) =
constant will in no case form z loop, sin’ce,closed cukves
v= constant would then exist within the loop, Hence, the
branches of our curve, after forming the singular point,
will support themselves against the boundary of the region
somewhat as shown in figure 26 Ifi however, i? is known.?
at least from the conditions of the p“roblemi that all the
curves $= constarit issve from .the same point of th? . ‘
contour’ 7$ 9 and again-meet at another point of the
bou~dary~ then the above+nentioned disposition of the
curve is impossible and therefode the van$shing of the
(x,Y)/(V) is likew.is’e isrpos$ible- !i!hesame is also

/

.“

. .
. .
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true in ‘the ca’sewhere, startiqg f?ox the same point of
the boundary of the region, the Guiwes *(T, Q) = $!Orl,tallt
then divide into. penei.ls, each- of then again-converging at
one point, ‘“

An entirely different picture will result if a steady
gas flow under conditions so that ‘T exceeds the limi~
ing value l/(2f Hq iS sought, The Jacobian (q, $)/
(T, e) in the region of T,,6 where T is greater than
the limiting value will then he the difference between
two positive quan~ities’ and wi~l be~ome zero along a cer-
tain curvet Consider, for example, the case where to “
the boun~aries of the q,$ region there corresp-ends in
the T, 0 region the s.~nicircleACE and its diameter AB,
the center,of the semicircle being at ~ =’ O; let $
along this contour have some constant value~

Along OA ‘evidently (a$/T, g) = 0: on the semi- .
circle ACB, (3~/.36)= O. Therefore, in passing along
any curve from a p,oint Ii on the diameter to a point N

on the semicircle, the rati~
(%Y; G)’ ~

passes through

all possible vaZues from o to -: hence it- follows that
if some value To * I/(i?@+1)’is chosen for T, then on
each of the curves joining h and if
found at which the expression

a point will be

. .

becomes zero, The series of these points in the ~,e
region will be on a certain curve, . The point where the
latter meets the curve 7.= 70 will be the point at
which there holds the’ equation

,, . .

and therefore by “thepreceding formulas also the equation

.
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Evidently from the manner in which one of these
points .i% ohta’ined it must be.concluded that. they form
a certain dense $urve,. Thus T(x,y) and G(x,y) will
not ‘be sin’gle-valued as is required in a real motion of

The”author returns to the solution of the problem “
which was especially. thought of in setting up this analysis.
The flow of a gas bounded by plane walls a’twhich the gas
separ~tes,and continues to flow in a-region-of constant
pressure is considered,.,The problems of the flow of a gas
out,.ofa very larg~ vessel and +he pressure of.an infinite’
g~6-f4.owat a plate’will’he sttid~edin greater detail.

,
Consider a particular solution of equation (12) of

t-heform

. . .%

tin ,= z’nsin((2n$+ an) ‘ {14).

where
4

‘n i’sa ftinction only of 7, To determine this
function, the ordinary .differ’entialequation ‘

““....

is used, ory explicitly
\’-

.,

Setting
.,

z~ = TnYn, ‘if”n>o (1’7]

yieldsv for the determination of yn, the equation

.
.’, ‘ “

[ . ,.
(.,;

i’”,
{..,

%..
,

.,... ,.
i.’
:.
,-

j’
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T( ‘) + [2xi+l*$-2n-.l)?] +

/

2n+ o1-T

,“

,,

:.

I

,,

. .
a hy~ergeometric equation, ,

orm

.,

are
Thi
of t

s is
he”f

;,

,,

,.’,

,,

Its integrals

~ (1)

n K(T), .
~ (2)
n,

-25
?

wh

;.. .’

that
= o,
gral

It, .
tation

ere K(T) deno~~s the Serieg”.

co + .CIT + C2T2 +
● V*,

If i$.is desiredto have an “expression $or
es not”hecome infinite at the critical point
equation (14), it is necessary to take the i
equation (16), which remains finite.’fo~ T =’

erefore is assumed’that, by making use of the
Gauss

do
in
of
th
of

$
T

nte
0,
no

Yn 2n + 1, T)

I)n are determined from twhere and he equationsan

‘ an + bn. 2n-$.$ anbn f3n(2n+
,

1)

The question to be decided is
of the above:ind’icated type may be
a function V expressed by the fo

whi
sol

rmul

ch of the problems
ved with the aid of
a

+ Be + (20)

where

mined

, B,

for

ar

S(

e

1*4

certain constants

,),,.(1’7),and (19).

and is dete r-!,

.,

First
,ems@.

c
s
ons.i
ince

.der‘
the

tlie
gas

boundary
“mass is

condi
to be

tions of>
bounded

the
by stream+probl

.

.---y---
;- ”,’”.’~,: ,.......,.
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1:
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}. ‘,

J dT 2
1--T) +’ $--2.n-l )TJ + 2n+l =0 ( 28)YnT

q-i
of

,is’is ~ hyperge
the.form .

1?ie equation., Its integrals

[
?

-an
= T I@)

series

:-..

denoteswhere the

co + ct7 + +
● 9*

If i$ is des

es not become i
equation (14),
equation (16),

erefore is assu
Gallss

ired
nfin
it’
whi

med

-*o have “an
i,teat the
is necessar
ch remains
that, by ma

expression
critical poi
y to take th
f5nitefor
king use of

f
n
.e
‘1
‘t

.:r
in

“=
he

t
T =
,tegr
0.
nota

that
o,
al
It,
,tion

do
in
of
‘th
of

F( 1,Yn 2n +

I

‘ where an and are determined frOlnthe equations

1

I
I

ail +lln= 211-p.,anbn $n(2n+ 1)

The question,
the above-indio

to be
ated t

decided
ype may
“by the

is which
be solved
formula

0$
wi

.

the probl
th the ai

ems
d ofo

a

,

expiessedfunction

$ A.+ Be + “( 2o)

where

mined”

A

by

, B, En are certain constants

formulas (14), (Iv), and (19).
and is det e“r-

Yirst
problems,

consider the boundary
Since “the gas mass ‘is

conditions of
to be bounded stream-

1
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lines, then along%he bownding contour df the ?$8
region ~ must assume certain constant.values. If.the
part of the contour under cpnsiderat’ion corresponds to
a plane wall,’the angle $ ‘formed by the velocity di-
rection with-the x-axis shou~d maintain a constant value
so that this part of the bovn$,arywill be a section”of ,

a straight line ”passing tlmough’ the pole T = 0,- If the
surface of the jet is considqrqd, ther~.$s along the sur-
face p = constant, a.n&therefore”, by the Befipoulli theorem,’
the velocit’y sho~ld likewtse have-a constant value VA. . :
But p2/2~ = T, , so ~~?t 7 ‘likewise has a constant ~alue
Toe- It is clear that the part of the boundary of the T,
0 region corresponding to the jet will ‘be.formed of an
arc of a ci,rclethe Qent&r of’which serve’sas the pole,”

The problem ~ro~o~ed o~ the motion of’s gas mass is .
now compared with the corresponding problem of,the flo~f
of an incompressible l’iquid’ for t’~e same boundary condi=. .
tions (the same disposition of the botindarywalls, vel-t
ocities at -infinity,-an.dVelocity at the jet boundaries),:
The latter problem is solved.with the aid of the well-
known Joukow.slcymethpd,’ By the.use of.this net.hod the”
relation between the complqx variables ~g ‘o/v + ie = .
~g ~~+ itl and w = cf%+ i*Z is found where Q1

and. $. are the ,velocity pbte~tial and the stream func-
tion corresponding to the ~rob”lem. It is aS&umed that. .

.( r-r
w= f lg J ‘~.+

is obtained and that “this’funqtion
series of the form

can be expanded in a

Then ,- /

1

.

\

●

,

!.

i
tj,

;.
$,.

z
>-

.’
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It is asserted that the corre~ding ~roblem in the-- .- .-.—. d— --- --—- --.—- -. —.
case of the ~a~ ~l~w is solved by the fi~mula---- .- .— ~ .. v---- . — —..-—

.).,

A*’=
(7

A.+B#+ ~B ‘7 & sin(2n6 + an) (23)n.%
Y~,o

where yn is the hypergeometric” series defined .by formula
(19),. Y its particular value with. ~ substituted for

n, o

‘o and ~ a-certain constant,

The correctness of”this statiemeilt:may,.in part, be
proved immediately,. Tlius,,it is readily seen that for
T To= the right-hand sides of formulas (22)and (23)
agree; :hence if for 7 = TO *1 “=constant, then like-
wise’ ~ = constant. , It, further, for any value 0 = 60
the function defined by for”mu’la(22)’does not depend on
T, this is true only if.the,.condition sin(2neo+ an)= O

is satisfied for. every n under,the summation sign; but
then .the right side of formula (23) for the same 9 also
will have a constant value-.. Thus the boundary conditions
imposed’ on the funct,ion @“ are’satisfied,. ‘

It is now noted here the the series * formally ‘—--—. -
satisfies equation (12),since it is the sum of its par- “.‘
tial ~ntegrals. . If now it is shown that for ax Tel---— .-. -. — —— ---- -— -
the series ~2~~ conver~es and for

--—-
TeTQ tends to the--- —-.... .—------- -— -— ------ —--- — .-...-

Amg limit as ser’ies~~~, then the function expressed by-—- -. —-—-
it actually will he the required stream function. If, .
moreover~ .it is” shown that this series converges absolutely
and uuiformly together,with the series obtained by its “
term-by-term differentiation withrespect to T and 6
it will be Justifiable to consider the latter series as
expressions for the partial derivatives of the initial

Then for a-given ~, making use of equations
~~’i~~s[~l)and (11)~ q, Xv.y, will he found.. As regards

.qi. it is found from formulas (21) which lead to the re-
lation . ~

+~.~-;[ > “~~ ~2sin(2n$+an)d$Ztn’r(l-T)-P

?,,. ..
l-(ij+l)~

-2Q(ca$&hl.e+an)dTzn - .( l=T)-@-x
2? 1
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whence
equati

by
on

use
(24)

equat “ion (15) and the foil owing ones

c + B{ 1-?
( lNT)-$

‘r” .
‘ii?

ov (l-’t)-~ZBn”~. n~
Yn,o

. .

may be easil’yobtained.

–)Yfn

‘%

,.

“cos(2ne +.an)

will

(24)

The functions .s
Ytn

Yn
which, in what followk,

be denoted by ‘n ?. a important part in

thi
act
pro
cOni
fun
in
all
str
.be

s ‘problem since”
eribtic ‘constant
perties of’thes-e
putation”and lik
ctions Zn and

the following se
these propeitie

atiqg’the correc
proved with re.ga

.,

thr
s.o
fu

:ewi
Yq
Ctl
pi
tne
,rd

ough them are expressed the char-
f the-various pro’blem34 Certain
,rictionsand the methods for their
“~ethe essential properties of the

of’interest here will .bedescribed
on, Only-by becoming acquainted with
s the possibility obtained “of deman-
ss of these statements that remain to
to the ‘fundamental series,for -$.

.

,
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l?ROO?i’O? Convergence OF THE SER13S;”YOR ~ AND ~.

.-
~ !tlzefunction Zn is that integral of the eq’uation

which does not %ccomc infinite for T = O. This integral

is of the form “zn = Tn’yn where n>O and Yn is-the
~hypergeomctric function

Yn =’ll(ati, b~, 2n+ 1, T)

.,

the parameters an and bn being defined by the formulas

It
,

possess.—-----.

%. -1-hn =t211- P, an%n = -@n(2n + 1)

will be shown first of all that zn does not——- —.
.

any real roots between the values.---—-y----------- 0 .an& —&_--------..-.--.----&-*------.—- Zp-1-l’
g_f-,j~n@-.y&riable_....T. Assume the contrary to be the case and ‘
let T “= a be the least positive root of the function Zn ●

Since 2* %ecomes zeio ’also for T = O, then, between
the values’ O and a, a quantity b should exist which

dZn
serves as the root of the equatio’n’~~- = O. Thus the

function under the differentiation sign on the left-hand
side of equation (25) will have the roots T = O, T = b,
and consequently its derivative should p,ossessa root
T=c where O<q<b<a. In view of the fact that on
the right-hand side of this equation the coefficient of Zn

., cannot become zero for T < --~—, it must be assumed
2P+ 1

that zn{c) = O; and hence the function ?n must have a.
root T = e,< a, By the same reasoning it is concluded
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that in the range of values of “the variables from O to
a an inf”initenuslbes of roo*s of Zn must be includ~d.

But then Zn “could not reexpressed by a power series. - .

)?rom the proposition Just proved, it follow s”that Zn
‘ is an increasing function~ “Thus, since ‘ Ztn has no roots

1 .
less than — must ;~lways’vary in the sape- sense?

2s F-i” ‘n
Since it is pos’itive for yer~ small ?, the same sig:l will
he maintained for’ all valtzes,-of the va~iatle w:thin the
above-mentioned range. Thus Zn increases for values of. .
T near zero, and hence ‘will contintieto increase until z~n

changes sign. It is noted that \

.
).

whore-itis concluded that, U2 ~<?<-~, the func-
2p+l ... —---

tions -x~ have.no roots a’ndare always gre’ater tk-”n O——.— .------ .--..—— ----------.—---— .----—-
for within these limits

—--— - --
z.~n”:,>.o. .’

?urn now tb the function Yn * the homomorphic inte- -

gral of.the equation
.

. .

or iis equi.valen~

,.

+- 1)(.1 - ?) i-PT~.+ @n(2n + l)yn = ~ (26)

.

.

t“

!

I?ron the theorem “just proved, it is concluded that
Y. does not have any roots between the.values of T with-

.

~ ~L b--— —-. ‘-------—A. —---- _____ _ . ..__. ._ _____ . ___ . -
“in the range considered+ The same ,.may-%e proved likewise

l.’
—. —..—- --- -..---— --—--
with regard t-othe successive derivatives “of this function- ‘ [’
I’irit o= all, from equation (26 ‘) it is concluded that
what has been Stalted is true” with regartl to the function .. ~’

Y?n;. Th.u,s, if’there existed a root ‘of this”function the. ~ -
derivatiye ~ ~ \ .’

;“”I
J ( \ i
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.2n+ 1 (1 7) -$
‘Y ‘n

.,

would likewise have
the second term on
cannot become zerQ
By differentiating

, tained

$mpo
equa
riat
), t

.,

16 be
..:26r

T
is o

,-

.,

-(

,:. ,,

I a 2oqt. But
the left~hand
within the ran
m times equa

.

,“-.

.

,.

this is
side of”
.ge of va
tiOn (26

ISsi%
tion
ion
here

cau
)“

;-

.se

‘2)?{1-T) + Yn (@[(2n;In + 1)(1 - T) - $ )TJ
(m+

Yn

..

+ [13n(2n
. .

.

1)

,,

n (2n
in+m+ 1

T 1
(m+ 1

m(2n -’$[$ ++’

1#n+m 1. *

t

yn(o

,,

: Y’”:(
;,

,

)

.—

~n (m+~)

T if
setting

t is

whence, zea

‘ceinnothave
yn(ti) does

m= 1, 2f 3
.prov’edd

ng a

ts w
hav

s before, it is con

ithin the range ‘of
e rgots within-this

c Iude

varia
rang

dt

tio
e,

hat

n of
By

emen

soni

zoo
not

**O

,g T

~.

,.

,.

.’

the correetness of this stat

.,Settin o, gives

~tn(o) + n y$Jo Pn——
2n+2

@n(2n + 1) 2n -1-8- +]2..

0)
. .

Pn. —s.

2n +.2

Pn(2n +-.+.—.. 1)
P-4-

2n
/j3n(2n + 1 4n +

,.

,.

.,,..:

Since 8 $s approximately 2,5 and n
number~ the qigns of the a%ove quantities
same will be true for any 7 eatisfy$ng

-.

is a positive
alternate, The
the inequalities
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oCT<—~ Thus yn ‘> ’0, Y’n< 0, Y~n > 0,
2B i- 1’

, Y!11 < 0 knd the quantities Yn9 Ytn, yfln numerically

decnrease.
.

~onsider now the function ,Sn = Yn(~ v T)-m. ‘The
differential equation which this equation s“atisfi-escan “.

t

!

I

%e easily deri;e-dfrom (26) and is of the form

(1 - 7.)id;#~*J (1 - T)~m-B S!
[

“2’n(l-- T)’m-P {~n -#T m)(”2n-i1)

.-.

. .

{27) ‘

By setting m = ~1~ it is seen tha’t for n >’1 -i-~
,. . 1’

the quantity within oths brackets maintatns the plu$ sign
whatever the “value of T*o If n is an integer this is
true foz all n ~ 2;. for n = 1 it will have the minus
sign. It is assumed that n >’1 + ~ . ‘

By. setting m = p~n
~~ere is in the brackets

T if the expression
. ,“..
est admissihlp. value of

. .

is sufficient” to choose
tion -

for a s~~t~ble choice of v?
a negative quantity for all-values
‘isnegative or zero for the larg-

.T: namely, ---L--- For this it
2f3+l

P so that it sat~sfips the equa-

(1 - v)(2n + i),

‘,

.!

,’

f
1
},’,

1
or , after reduction,

(28) ‘

. .. ...-. . -- --.—- ----- . --- --- .-- ----
----- —-—..-.Y.——...—- ....——-A..—— -——

*Within th~ limits, of course, of O and _._l_
2$+i;-

this must be kept in mind throughout “thefollowing discus-
Sion,

:,,
:,,:

t:
~ ,. -,
>.

~.------- -
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!l!he
=Ca

for
.181

maximum
); in th
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-WI 1
,is

$

,ue of
case
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0

1

3
I
●

taine
n gen
083;

d.for
,eral
for

very lar
w<~;
n= 3;

ge

..
“.:

n (n
thus ,
V=l

2

,

above Ch unc-
thi.n
the

(27)

an

tion s !.n
the range
same reaso

canno
of var
sing a

t have
iation
lready

r

Sfn(o)

theref

t

=

OF

is noted

m- $n

e the fun

that Sri(o)=

is Obta+ned.

ction .

~ and fr on

For m = @n, s

Uat

(o)

ion

> o d

(29)T

eas he
‘,

:’

.,

,,

,’

,,

incr with var and will exceed

but Slln(o)

~ is a nega
$

se, as a deer

zero; hence

es t
,,

1
-,

,,

,.

h S’B(o) o,
1,—m owever

and this itude for 21>l-!-

For this

should f
that

reas

O* T

on’

‘>

S’nud Iikewi

0+ be’ less than

easing func.tion

it is concluded

.Yn(l
,-$ n

(30).

,for n

proper

>1

fra

-1-

Ct

a decreasirigfunction”and represents a “,

3’

equati

Sf’n(o)

<l.-i-

‘) Wil

and

~ the quantity

1 he less than O

therefore .sln{T)

withi

for

>0

n the br

m= pn;

and

acket< in

S’:a(o)= o,

or

oil

>

n

.(27

o,

Yno -’T)
-$ n (29’)

will ,ncreai sing function?an

!l!he
will

sma,l
be

ler
les

o

r
s

<

‘Oot, denote
than 1. $t

l-<.~ i _“,
Zp .i-’-~:’

d simply by w, of.eq
can he readily shown

the !30efficient- Qf
<

uation
that if

‘n

(28

and
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in equation (27’)
latter %eing yos
since Stn(o) >
function.,

,

will again
itive. !!!her
0; and henc

be of constant s$gn, t
efcwe Sin.(T) > 0 .is
e it is co.n~luded that

he
obtai
~the

(3T)
--p$n

Yn(l

ecr
=

with increasing
. (P is ta= 0.93

i. Thus , for example, for.
ken equal to 2,5), and there-

-P -0.93$
T) .-,.yl(l - ?) will

eas
19.

es
P’

.“,

,.

‘--

fore with increasing Yl(~
be a decreasing function.

The above-mentioned pr

functions within which yn
operties of yn give limiting

is inclibd: namely,

for- n>l+-~,
$

$n
T)1 >> Yn

1n<l+--,
B

Jhi
(1i? or 1 4- Yn <

,,
I

ev is de
smaller of

termi
its r

tied by
Oots.

equat ion (28) and is eq,ua1 to

It may be noted further the function

Yn (1
-2$n

incr.

t?or

it m
tion

grea
deno

Yn,o ‘

eases afortiori. 1?

n>l+~,’ on the
P

ay 3e considered as
s Yn(l - T)-v~n an

test value which T
ted 3Y ?0 and the

this will ”give the

or n

basis”

<

of

th

has

i s

b

is
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incr
He

en p
of

evi

sa i

eas
nce

r 03

Yo

dent ;

d above,

‘in’g,fuac
i’fthe

lem is
by

the pr
a (1

oduct
7)-( ●
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in

sumes in th
responding
equality

.8 giv
vaIue

Y’n(l -—. . . ..-.-.
Y ~,o(l -f

< 1

or
,.
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n
(31 )<

Y1n----
Yn

LaSt to be considered is the fun,ction ‘n

on which s as hbS teen shown i n the for ego ing dep ends the
computation c
the various &
fwhctioil 2C~

from the hype

.

est in
ch the
ined

rgecmetric equa ti 0s. (26) by

.CIT

e
,

found.!i!hu.s it is that

XtnT’(~ - T) +’:nXn2(l .– T) -1- -1)7] (32XnfilT- n{l - 0+

,

wi“t h conoge on,This eq ua Xa (
been
in

ns a
~ de
(33

o) = 1,

Shown:
the vqr:iable

lways
creases with.—. —
was differ-

tion, t ther the diti

fully determines the function Xn. It has
already that the function Xn for a change

within the limits under, consideration remai
greater than zero. it wi~l be shown that i...—
inc?ease in T. For this purpose: equation—— .— -
entiated.; there was obtained

X’tnT(l- T) “+ x’1n~2n(1 - T)xn +

Xn$ -“ n(2D i-.

,-

;-

Substituting in the

and raultiplying the
it to the form

brackets for Xn its value
~.

equation hy ;2n(l _ T)-%n

T’ y’n4-- -
3.. Yn
reduces,

:_d_
dT

2n-i-
T ‘(1

T.]+
n(2@ l)JT2n(1-T )-$YxnP 2

n
+.

.,
,,

,.
,.,
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., ‘r’y~n
But Xn is less than 1, sintie Xn --J * -’----

.
is,a neg-.- n Vll

ativ~ magnitude on thg basis of what has %een said Ivith
regar~~ to the signs of th”e,fuactioh yn and its .deriva-
tivesg .Hence, ‘thengght-ha”nclside’of the Obtained equa-
tion is a negati%e ,qu5Rtity of dom:tant sign, If xtn;,” ~

equal to -$ for ‘+ = 0, had a root with,in the range of. .

variation’ of ,.X ,,.t’hen -d-‘F‘n+’ (1 - 7“)-8+’ yn’x~n
d?. .

wo,~~d

also become zero for a valu& C@ T less than t“his root ,
a ‘result yhibh is impoq~i”ble .. But X’rn, every<vhere
finite, as can readily fie.s,hownr cannot cha~ge sign except-
by passing .thro~gh a roat; -Thus x.!~ remazns less thail
zero and therefore Xn .decXeases.

!lhenext step is to seek”to obtain functions” that
limit the value of Xn, For’ this puzpose” the following
theorem Wiil he proved: Ifa -o~.substituting .in the equa– -
tion ,determinin’g Xn,

.—. ——
a homomorphic function .kn, there——

l~;btained on~h~ le”ft—side a yositive value of--constant ‘-.....--———-. ---,-—- -—- ------- ._.---------_.._.___—— _________
sign, then k~ > xn; the inequality sign will be reversed ..—.— —.- —, — —
if the res’ult.of the substitution is less than zero. For
T O, kn ‘—”—

——
= may be equal to 1. Fr%”t’h”e assumed inequal.i~y

,.
:

k’!n~(l- T) + nkn2(l -T) + knj3T -- n{l-..(2~ + l)T] ~ O (33 )

subtract’ equation (32), which leaves .

. T
,.. By sett~ng ,

[

“ kn-’l
-—- ndT
,T .. T ~}n’ .0kn=l ~-”-—; tn=e >0

i n Zn
.

J

then , ‘on substituting in the brackets for kn and ‘n
t their values ..in term”~ of kn and Yn and multiplying .“oy
1 -P

the posit-ive...factbr. .yn~# 2n-1 (1 - T) , ther’eis ob-
:ta,ined .. .. ~ ,’ . .: ..,,

-~ ‘;(~...-~n T

dT
j 2n” (~_,T):~ ‘yn~41 ~ ~ ~ ~ ~ ~

.

.,

I

i
t

i’
4

,,. ,

1,-,
1’

I ,..,/..
1-,. ,
i

l“” ‘,-,.,\.-.
!,.. .

1’. .,

i’
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i“
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O.to’rIntegrating this inequality withia the limits
yields ,. 1

“,

.’,,,

,’

, whence the required inequality is obtained

nay be con-
puted to any degree”of

..
acc.-af~.cyby traas~orning it-into a

continued f2action.- Ia iiil!?serential equation (32) the new
, ,,’
.,

independent variable s defined ly s = $_-F is su%sti- “ ‘.

tuted; when 7’ varies’from O to ~p~ 2$ .s ‘*rariesfrom------

0 to 1. The differential equation for Xn t will %ecome
5: I

. . . ..

:-
,,.

..
..’,

,.

,.

,-,

X1 n S(1 + s). + Xnps -1- Ilxn= - n(l - 2ps) = o (34)
,

F~om equation (34) is found, Xn(0) = 1, x~n(o) = -S. if
any function k= satisfies ,ine~-=lity (33), thqn on suh-

siituti.ng “in (34)-there i{ill be obtained

kf ~ S(I+ s) + knpS+ iakn2-ri(l-213s)~ 0 (35)
.

-,

:,whence follows as before the relation kn~ Xn> ‘or
kn(0) = 1,

Equation (34) together with i.neqaali.ty(35)”will be
written as

~ln S(2 + s) + xnps + rlxn?- n(l - 2is} ; o (36 ),.

.

whi~h is to he under’.stood’as follows: If, 032 su%stitut$.ng
any finite function within the range of variation of s
and equal to 1 for s = O, the result is ze~o on the lefi-
hand sid,eof relation (36), then tt.isf-~a.ction“is the exa”ct
expression for Xfi; if , as a result of the Guhstitution
a Positive q~antitY is obtained, the su%stttuteiifunction

[.”:
,. .

—.+ “, .-’
.-
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is always greater than Xn ; in the contra?2y case the ,si&n

of the inequality is reversed:

(37}..

whero Jd is a new” function to he determined. On reduc-
ing and changing sign,. there results from (36)

. .

Jd’t *(~.+ s) + c‘n}@n+2:fM-(a+l)c.(n~2~.q.n@.”+J$.+..l~o. (“37’)

where it was necessary to-reverse the inequality sign.
The meai~ingof the relation is as,follows: If, after sub-
stituting in the I,eft-hand side any function in ~lace of
~(n) 1 the result is a negative quant$ty;. then replacing,.
~ol) in f’ormula (37) by this value there is obtained~u
u~er limit of the function Xm w that is; a function-- .-— — ..—- —— .—-— -----....
greater, t~an xn.

Further is set “

. c(n)
&o(n)

= ~GT-
S

.

(38)

=O(n}=”c( n}(o) =p ““.29’+ 1 “ ‘+where .- ——- , and the function h
. -2 2il+2 .

sati’sfi”esthe relation

~ (n}j (n) (11)2
s(l+s)+,?) C2n+3+(13+l)s]-Ub s(211+ 2)

..

whence” is o~tained ,

~ (n).=_.&?.@) ““a+ ~ + 1’ .&&& “=
o .’2 ‘-—- 2=+”3

-..
2sl+2

.- ,’

Next, setting successively ,..

. .,-
.

.

,,

.,

,.
,,

,,

,.. .’

.,,
.,

“, -,,.

,,-’
1:
;
t
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[99)

yields, for the determination of .az, ~a., Oa; da,, ,,
the’ relations:

c,’n)’s(l+s)+C,(~)(2n+&@) -(%?+3)c1@)2s-

> i@’S(]+S) +d2f”)[2n+7+(@+ l)sJ—(2n+6)bJm)gs—

to set up equations for the determination of C(n)a,.”
Jn)m, and formulas for Jn)

m.o~ J%.* ‘h8’
latter are of the form

-v , —. -

P 2(1+1 ‘c(~jl,k.O=- 9(3+1-– (7n+l)?2;+2m+2 ‘~+m(m+l)2n+2m+l

(y~l P. ‘ ‘“
=q+(m+l)z 2P+1

“2#+1
m%o -–(#62+2)2n.+2m+72n+2m+2

or ~ After reduction:

(?n+l)(2?z+7n+l)
)$–(2P+l)(2n+2m+ l)(2n+2m+2)C(wm“=.

(40)

(m-t-1)(2~+~+1)(y”)
=~–t2@+1)~2n+2m+ 2)[2n+2~+3)”.m,o

i’ ‘

.

“ ‘C(’?Ys(l+s)+cWm(2z+2m+2-ps)-(2?z+2m+l)cW2ms- “m
—@). ~_,,o(2n+2m)+p+l z o,

&fiJ'm;(l+s)+d(`)m[2n+2n+3+"(@+l)s]-(2n+2m+2)&~gms-

—c(~~mo(2n+2??2+1)—(lz o. .
All these rela~ions. baa F& readily .yeatfted by the’
method of passing fro% ~ to m .~.’le

t

1. ,

I ‘

i
i
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,,
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The sign <. tn.the last of the foregoing relations
hol?fs.uritilt.fiein@ex a ,’~xceeds a certain limiting
valtie:nanely; while ;~n~.~oisPositive; if c(n~o<.o

then ‘):nthe Telatioi fo~“~~(n)m the sign <“ must .~ re-

placed by >, This ‘is ~e&Use ,‘among “the s.implif~atioas
which were made in transforming the.abo~e relati QQ, there
occurred division.by C(n)m ... ‘

r -.

lly collecting .’t~.eresults, xn is finally- e.x-pressed
by the formula: . .

where
(40) ●

%

.’*

(41)-

..

.’

,,

.,,.

.,’~,
!.

,. ,,.

j -:
!-~
,.-
.,

. .

,.

Now consider the snagn~t&lc of, the quantities Jn)
~(n) m,o~

m.o~ It is not. difficult to see that they are always
.

contained between fi/2 and -A, The f$rst of these is “
bbtaiqed for n very large (n = m); ‘the sec.ontl,in generals
.cliffers little from -1/4 and is o%t-ained from the minimum
of the express~on

.-

() * ‘b (29 ~ l)k(2n ~ k)—— . ——~nk~l.% ~--
2(2n+ 2k - l)(n ~’k)

these values.for integrazi- n’(2n - 1) ~ 1;
to .

n are equal

“2>
4n -n-l and 4n2 ”-n

I
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L? “—..
4X’7X13

___

3X4X7

a“sstune

n=

n “=,

,

n=

2,’

3,

4,”

m=

Ill=

n=

a
/

.

%0 2,5

(42)

3*O

=(3) -“=
4.0

i..

!
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musk be satisfied, or ., /
.’

‘ ,! [’
I

,.

:, .“ ;,
, ,,.

i-
,. (The limiting value of m denoted by ml is expressed

‘by the f or~ula

i
\

Butifp>qandp= a(p) +$, q=E(q)~4

where S and 3 are proper frac*ion5, then z - q =-E(P] ~.v(q)

+0-4; . . .thus’, -’..

Ii(p- q.,).= E’(p)- E(q), or E(p) - 3(Q) --.1

I

..

Therefore , comparing the obtained va~ues of ml and
the limiting m, it will be found that n

t
will hi equal

to the li.mitiig m for the coefficient c n“)~,. plus-

3(~), or plus S(8) + 1. l?hus ‘

!

I

n= 4, ml = 7, #Q,,eo = - _3_
100.

All ~(n)
m,o starting from that which corresponds to

the liniting value of m like all a~n~n,- for m ~-m.
,,.

a(n)ml.os1-
! are negative “quantities and the remainder —.-—.—------

Y-3~m ~+ 1 ● 6s

of the continued fraction is expressed in the usual form
,, .“

. .

. ,,

.1 .
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l+a -------
1+-I?” ;,its numerical value.being contained

l-l-c . , ●

between .1 -I-a and l-~–~__-,.
1+11*

Of the functions Xn the one that is particularly
simple is which for the assumed value of f3 is ex-

‘-pressed”as ~l~raction.of-two polynomials of the third
degree. 3’0: q = 1 ~

Jl) = ~ &)o= 7’ Jq ‘7
o - z’ 56’ z.o=-~;

#)1 o=~
9 28

, P

Jl) 5
2,0 ‘-y~’

.&)
2,0 = o (~Y (43))

i’

5 s/2
X1=1-—-—”

1’ + s/4
—- —-.
1- 7 s/lo

—-—-
~’+ 7 s/20

,.

.—---- ..

1- 3 s/28 “

“;=. .
or , after reducihg, .’

32 - 64s - i4s2
xl ‘= --—-— - 2s3.-—-—.

. (4+ S)(S2+2S+ 8)
(44)

;.’.
; .-

,.

With this formula yl is readily fO~lna. I?or this

purpose the previous variable T = ~--- -is substituted

which gives
1+s 1

!.

.,
. .
whence, since Yl(o) = 1,- there is oltained

.
I
! ..

I

.

I
.
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The preceding simplification results only from the Founded
values : $ = 2e5, Y = 1,40. The more accurate value of
Y for air is 1.4025 and # $s somewhat less than 2.5.
In this case all Xn are expressed hy infii~itecoqtinued
fractions.

To employ in the applications the exact formulas for
Xn appears impossible, since this would offer very great

difficulties which have n~t been overcome. However, hy
usink even the simplest proper tractions$ Xn is obtained
with sufficient accuracy. Entirely satisfactory results
are o%taiaed even in the case limited to the third proper
fraction ana Xn is expressed by

ors after reduction and substitution of the values of the
coefficients

.

Psa(2n + 3)(Bn - @ - 2)
Xn=l-ps - —......—--—..—---..-—.-.—— (45)

(2n + 2)c2n + 3 - (2@n - i3- 2)s]

The ei+ro~ for such computation of Xn is greater the
greater the value of s, The. magnitude of this error now
is estimated, !zQnsid@&~g.~&& lkQ-&Q&g251 Y&W&L.Q&. n~

With the exact value of Xa for n = 3, a direct
comparison of the results of the computation of this func-
tion nay be carried out.by formulas (44) and (45). !Phe

computation will be made #’or maximum s = ..??-or
2B

s = O*2*

assuming as before @ = 2.5. Yhe exact vaiue of xl will
be

??6—. = 0.5253893
14?$7

Prom formula [45) is obtained”



xl = 0.525510

!Ihe’”difftirenceis approximately 0.00012.

J?or other values of n in estimating the err-or, it
is necessary to proceed otherwise, It is noted,fivst of7.
all, that for all n > 2 formula (451) gives a function
graater than Xnj the contra~y is true for n = 2. In
a,~dr to show this,

Y
turn to e~uation (38t), detertiai.ng

~(n ~ y~lisequation’ may be written as fo~low~:

~(n)’
S(1+ s) + &

(l-l)a
[2n+3+(fl+2)fiJ-b s (al + 2)

- (2ni- 3)i3(n)o = O

.
Substituting in the left-hand side @o foc a? givtis

@os[p + 1 - (2n + 2)b(n)o]

or, after substituting in the brackets for b{n)o its

value by formulas (40)

E or n>2 this value willbe less than 0. But from this.,. .
a
?

has been said, it must be concluded that on replacicg

i3‘) in the formula for Xn by a trial value, a functi.cul.

greater Xn is o%tained. On the contrary, for n = 2 in ‘

the h~ackets, the quantity

2- @!.+4 > 0
7

.

which shows the correctness of the reversed inequality”
{x2 is -gr

?
eater t an the’value that would be obtained on

*- *’substituting ~(a o fo* ba in the formula for I@) foi+)
the value” n = 2.

As regards X2 , the lower limit of the functhn will
be the following proper fraption. !Chus

‘,,,
!

I‘1 ._ ___”” “ -- . : .-
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3y coinyuting the values of the limiting functions for the
case of the greatest difference in their vuluest when

1
- = 0,2, there is ‘obtialned

‘=%

0,47034< x~(o.2) < 0.47037

Intecase n>?, .
Y

assume in the equation for ~(n),

h(n) = .?9 , where k is a constant to he determined,
1 u ks

and k is chosen so that the resu~t of the substitution
is greater than zero for o<s<~~. This requirement

leads to the inequality

k(2n + 4- @s) - k2s(2n ~ 3) - (Zn + 4)c(n) 1,0 2 0

~he smaller root on the left-hand side of this in-
equality is expressed by

-----------------------------------------------------

Its maximum value corresponds to 1 0.2 and is,?
If, ‘=ZF.=
f“

-equal to ,,..-.,-,.. . .

‘$::8
n + 1,75 - 4Jn~l)+l

I 5—
5 iF-—.— —-.~.-,.n.-.----..+

2n+3



II,

NACA ‘I’M~OQ 1063 42 .

If k is equal to this value, the above inequality will
: he satisfied,

It is now possible to indicate the limits within
which Xn “i’s included, The upper limit is expressed by

fornula (45!); the lower is obtained by substituting in

this formula b(n)o for b(n)------ ~. After reducing, finally
1 - ks

Bsa(Pn - P - 1)
1- $s - —--- —-—”-”--”””----””–” > x~ > 1 - @s

((Zn+a) ~ 2~n -P-2 ‘-. —.--....-*8
2n+3 ) .

13s2(lln- ~ - 1.
-1.------------------ ._. --------- ___

((2n -I-2) 1
2pn-p–2

- -----.—-.-s - -%s2
2n~3 )

kao
where 1 = %——----, ~. = &-(Z$+l)(2n~l)------— -------- ,

1 - ks 2 (2n i-”2)(2n + 3)

(47)

.

and k

is determined by (46) .

The numerical values are given for s = 0,? of the
limiting functions for Xn for n=3, 4, 5, and 6:

0e4348 > X3(0.2) > 0.4343

0,4095 > X4(0.2) > 0,4073

0s3905 > X5(0.2) > 0.3872

, 0.3755 > X6(0,2) > 0.3704

It is thus seen that the error increases, or more accurately,
!.~, may increase with n lut nevertheless is very small for

srn’allvalues of the l“atter,
~

For somewhat large values of
n the liuits of error widen. Thus

n = 12, 0,326 >,x@.2) > 0.308

n = 24, 0-293 > “x=4(0.2) ‘> 0.251
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This unfavorable circumstance is offset, however, to soae
extent by. the fact that the functions Xn with large n

enter the more removed terms of tho series a’nd the coeffi-
cients of these terms are relatively small.

The limttzng functions for Xn also will be given

with large n. These functions will be useful in computing
the limits witni.n which ~he r~mainder term of the sorics
for the gas jet problem is included. Again, in the differ-
ential equation defin~ng JCn

dns(l + s) + xnBs f nx’an - n(l - 28s) = p

Substitute on the left--hand side the expression

p’=TTn-%p . and choose the function u so that the

result of the substitution is greater than zero. Then,
%y the theorem proved above,

JT=----- —---329s i- 2US > x~

tJh~s ~u~stitUtion gives on the left-hand side of the equa-
tion for the exp~ession .‘n -.

c--z=*==2 ~k7)U;s(l + s) + 2U[I-I-(1+ P)s]- Ml + 2s) + au 1
k=. —-——

—.----. — ~—
j--i. ,- 2/3s-i-as’

which, as can”3e seen, will be greater than zero if .

u.= f f
~= B (Y’-=--m= . g3 $J--—--- -—..

2n2 2 na

!Ehus$ for this valUe of U, 1 - 2DS + 2US2 is a decreas-

ing function of s; the product, hovcver, of this root by

2nu for tl~e maXimum value cf tk~ varia~le s = --- is
2P

e~ua~”to (1 + 2~)~, an”~“fh&refor& “t’he””’qtia”hti”ty”””k remains
positiye. Ozz”the other hand, it becoues negative, whatever
the value. of s, if

. P(z + m}u = —--—-
2n+2
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,> ,..since,,the.,numerator in the expression for k,,.. . in this case
is equal to zero for” s’=“ ()-arid,”’a-s”“a-decreasing function$
will be less than zero for S>o. Thus

By raising somewhat the upper limit of the function
Xn , the first part of the dou%l.e inequality also can be
transformed into

JI - 2BS + r’
3 2$2(1 ~~’

-------”-—-s > Xn
Q

and therefore Xn Oan be expressed by the formula

‘n ‘=+ ,sm~.Jl-
zl

(49)

whare h is a proper fraction,

It can be easily shown that xn for the same value
of the variable decreases with increasi]lg n, This is
clear from the equation for Xn+m :

Xtn~mS(l -1-s) + Xn+mps + (n ~ m)xan+m - (n + m)(l - 2@s) = O

,Subst,ituting on the left Xn for
‘n+m ! there is obtained

on the basis of the equation for Xn

.
m[x2n - (1 - 2Ps)]

a magnitude greater than zero due to inequality (48) , and
therefore it is concluded that

,*!S, . . . . . .,, .,
. . . . . ,., ,.,

‘n > Xn.+m,,,,, ,. ...,. ,,.... .

whatever the positive number m.

(50)

l~OW with the properties of the function Xn that
are of importance for what follows , two inequalities
which the functions ,yn must satisfy will be noted
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,g.ux:ther”. The first of these will be derived in the follov-
ing na’nie”r:“-Set” up the ‘clifferential .equatio.n determining

Y IQ
an=--:’

.

Y~

[II’n + #n)T(l Y T) + [(2n.+ 1)(1 - T) + 8T& + Sn(an + 1) = O

41s0 set
- ..~#h,,,

.Ttn=“ & which gives #
~ ~:.*

,.

- @n(2n + 1) ~ *Z,_7(29n -B- 1) = * (51)

TCIthis equation, as can be easily seen, the theorem
proved for equation (36) for the function Xn is appli--

cable. $f on substituting for ~ any h~lomerphic
function there is obtained on the left–hand side an
expression greater than zero, the substituted expression
will be greater than fn* If 2Pn is substitutedthis result
in fact is oltained, and therefore &n< 2Sn.

Substitute , further , in the equation defining ~n~n

in place cf ~n~m the function gn, The result of the

substitution, on the basis of equation (51) , “which is
satisfied by ~n, rcduucs to

This expression is negative for any T, since it gives a
result less than zero on.substituting for ~n the greater

Integrating this $nequality from T to To, and passing
‘ ,4

1
#\ $rom logarithms to num%ers, gives

Iml n II III mII I nm n-n -
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-2~n
Yn~-T

( ) Yn+m 1 - 7
-2~(n*m)

--, - .*___ - ( ).>,---—-..----- ... ..=.. (52)
Yn, o 1 - To Yn+m, o. ‘1 - 10 ..

wher e Yll,o, by “the assumed notation, denotes Yn(?o).

( 1 -a~n
Thus the functioQ ~~ - T----- _______ ------

1 )
~Ecreases with in-- TO -------- ..-___.. __

s
creasing .x+.---------

!J!hesecond inequality which it was proposed to derive
follot~s from relation (50), .From the latter is .o~tained

,.

Yfn : ‘n+~--- >
Yn Yn~ m

Integrating within the limits s and so, gives the
kesuktz on passing from logarithms to numbers :

Yn ‘n+m ‘— -- < .--,----
. Yn,o Yn~m,o

(53)

l’hus, the ratio -Zz- increases with increasing n.
Yn,o

—-- —-.-—-

It is necessary t
Y-REgfz32~of the ,setiies
problems. In explaini
of this type of prohle
mulas for expressing t
pOtelltial were arrived

o w
giv

ng t
m (s
he S

at:

oceed to
‘ing the s
he genera
ee ,ptw I
tream fun

the JXQQ& of the con–--- ___ ,___
olution of the gas jet
1 method of solutioil’
), the following for–
ction and the velocity
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Thqse are formulas (23) a,~d (24) of part I- The indices
a“ eiltei’i’ilgthem increase~:as-the berms-of. an ar..ithmetic
progress ion,. It will be shown the preceding series are ,
absolti-tcly and uniformly convergent ‘for any T< Toif
this is true of the series

*Z =30+ ‘p (+)” sin (2ne + an)

expressing the stream function and velocity potential for
th~ corresponding problem in the case of incomp~”essfble.
liquids. The series WI and ql will evidently %e

Iim ~fi~ < 1, wh@re
absolutely convergent if ~ n and nl

=~Bn
are tvo successive values of n. It will be assumed that
this co~~dition iS satisfied. On the basis of relation (31)
it can then be stated that the terms of the series * are
eorrospondingly less than the terms of the series

which is an ahsolutel~ convergent series for ?<70--------- -—--.—-------

70 <
1—..— : for in that case

2p+l

..&(l -’ # =[1- (2~ + 1)?](1 * T)2P-1, > O

and therefore is a proper fraction.

.,., .=, ,,,
,..,, ,,.,

The remainder term of”the’’’serie”’~:~:

(54)

if



—.

,,... ,.,.%s.numerically less tlian the term R In. . of the series (54) .,,,. . ... ...... . . ,,... ..

hut 3 :n approaches zero with’ increasing n no matter

in what manner T is less than TO . From this it is
concluded that the series * is 3ULW2H!W ..QS2QYQZi?xQi●

Since the series entering the function q differs
from the one jtist considered by having cosines instead of
sines and the successive te~.s multiplied %y a series of
decreasing positive quantities, the theorems just proved
likewise hold for the series q?. Furthermore, it can be,
easily seen that the same propertied are possessed by the
deri~ati.ves of the functions q and V with respect to
‘e and therefore also their derivatives with respect to
T, since the latter are coniiected with the former by the
linear relations (11) of part I, A consequence of these
theore~~s is the continuity of the functions q and $
and their derivatives within ‘the range of. the variables
T, e under consideration. (See vol I, p. 310 Gf refer-
ence 7.)

It.will %e shown, finally, that as T ap~roaches the—-. . .—
&imitin& value,------ ..----—..T,~4,.,-~Q~-g~ries.-q _aa~_.-~.,_~ppr;~;fi-~~i~~—-—.- —
~hich are the values of the series obtained on substituting------
TO fiF––r”;--$zTEIsI~uT~Gs;:;;;;iz;F;E;E; ;;;s g

_-—_._.. _
----- and

Cfl of ~ “terms after the nth in the series v and $.
Let nl, n2 ..qnp be successive values of n; then d.enot-
iag the ~z&~&Q~&

?

(
1--T

)

2$ ._yQ_ 1 - T
( )

-2$n
-e-y-

7; 1 - To a .-1----
Yn,o 1 - ‘O.

. .

correspondingly by ~ and lIn,~,.. these gums can he trans-
“for’me’d’tnt.o. ~~~~ ~ ..- .... .... . .. . . .,

11
P

,(1- T)a=- ‘p~ Bn ~nqnXn coS (2n6 i-an)
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The series zua and XII‘n uniformly converge for

any ~ less than unity, since they icimcide with the
series entering the functions V1 aao. “~r;* IV is assumed
that they converge also for E=~: $h~.n f:om a knOWn
theorem in analysis their val-tiefor ~ ‘z J. is the lir,it
which they approach as ~ approaches 1 (and hence T~To] .

Sut in this case n can be given an increasi~igly large
), value so that the sums\,,

Unit ‘nl + ‘nz* %1 + %Z + %=?... %1 + ‘xz2 + ● ** * unp

are included between any values g and 6 as small as is
desired, whether the quantity ~ is less than or equal to
unity. Andt since on the %asis of the properties investi-
gated til this sectioa of the functions Xn a~~d yn, the

quantities lln, xn enteriag the expressions G and al

are greater than zero and decrease with increasing n,
then hy the theorexn of Abel, u is included between the
limits

,!,

l?or the same reasons at $s included between other
arbitrarily small numerical lfmits, and the proposition is
thus i~~.ov~d.

~,,,~
it As a result of all the properties which have %een

i

,~ demonstrated of the series
\

q and “W the conclusion is
arrived at, which was the object of the investigations:,>

“1.. namely, that t-he form~las QQ12&g~&..3Z~..SQctua~ugQ&E~,QQE~,QQ.----..---—
,%, “ gg: QU?.E?WUNL!S.JWL CA9N..WWQSJ?EL*

l!
k
ft

~{
f,

1,/:1, , ,,, .,,-.,. . .. . .. . . . , ,., .- .,, -

.

. ..—-—-
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PART HI
r ,.-. .,. . ,.

THE YLOW OF A GAS FEW AN INFINIT31LY WIIW VESS3L

%%e method descri%ed will be applied to the problem
of the flom of a gas from an infinite vessel with plane
walls * the simp2est case be~ng conrni4.ered- that is,
where one wall is a cotit.inuationof the ~ther~ ,.

Consider am incoinpressible liquid floving out of
such a vessel (figm 4); Alland A~B’ are the traces of
the walls of the vessel; OX is the trace of its plane of
symmetry: BCCtBt 3s the escaping jet. lf the quantity
flowing out per second is denote~ by Q, the velocity
potential and the stream function, xeepectivelx, %Y V%

and VI, considering V = O on OX, then in the region
of flor? m varies from ---~ to +cO and ti from
Q ‘Q

T

-5 tv+’-, The complex variable
2

v= 91 + W1

will be conhected with another’complex variable
erence 2) through the relation

The region of variation of w then corresponds

u

to

(ref-

the
upper ~alf plane of the region of U. In addition, the
logarithm of the ratio ef velocities va/v at Tlhejet.

b., .,., ,. .,,,,,

For, Qon the’bburi~a~y” ‘ABC “~- = -w--z -? v.aries.fr.om -m

to +co and u passes through the negative part of the

real 823s from o tQ. -m; @ =
I’r

~> o > 0 if~t
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.> ... ..... (3>U> -c: ,d.= ~>8>0, for0, V= V0,2 -C>u >-m,... .... .

On the boundary At31Cf $ = ~, q- varies within the

same limits; e = - ~, C=> d > 0 for O<u <c;
2-

*=O,

v =
‘o ‘ -;<0<0 ifc<u <m. The point u = O

thus corresponds to the infinitely distant point of the
vessel nhere d = co and the velocity becomes zero; u = co
gives the part of the jet a% infinity. Finally, for
0 0, u is purely imaginary and ~ = O and the center
li~e of flow coinciding with the X axis is obtained.

)?rom the preceding formulas is found

Q
TT=-- lg’ ( i)+ie

i sin ——————
‘K i’ )

or, if d+i4.3 is denoted by u,

Q eu - e-u
~lgisin~=-~lg—-------v=--

2

-Qlg(l
11

_ e-z2Q)* (55)

It is noted that qz = O .at the points where the Jet

separates from the walls; o in these cases has the

value *i&

3Y expanding the logarithm in formula (55) in a “ ‘
series, there is obtained:

co

u f-p~+’iv~ I
eanb

—= lg2-(4+ ie)+ ‘ - .(COS’ 2n6-
Q

i sin Zne)
n

. n=l
whence

p-J
.,, . *In””t-~”e’&a5-e~f a vgsse~ With’ the walls meeting -at

an angle it is necessary to replace”in this formula u

by ~ ‘and in the succeeding relations d by .!, e by

eq
q

-0 ‘The angle between the walls in this ease will be equal
q
to qll,



.Tn f-e--~$x-=-fj-,, sill 2n9 , ......
Q Lf n

x

Substituting in this formula the variable 7 deter-

43
mined by the equation ~ = -$ = e results in the

o 70
required eqression:

Since this series IS absolutely convergent therefore, by
the method given above? by use of formula (23) an expres-
sion is arrived at for the stream function * defining
the flow of gas from a vessel of this kind; there is ob-
tained:

(56)

All curves V = constant in the ?,9 region start from
the point T = O and meet qgain at the point T = To,
e c).=

The velocity potential by fwmula (24) is determined
by the relation:

With the formula for q, it is net fizfficult to
set up the .equati,pn of the jet. By formulas (8) of part I,,. .,., ,.

,-

,

1. —.
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CsJ

Integyatfng with respect to G yields

“~,,sin(%+lld sin(2n-1)0’
;tiHy=@(.)-(l-.) ’-2~(;) ,c”[–2,,+1 + ~,,_l ]

1
*

i-’

Since, for 9 = 0, it @hoald fO~~OW that y = O;
@(T) = (). ~h~s, f~nal~y,

therefore

~ ‘Ey(l---~);==—sinO+

may be put into’ the form

sin(’hz—1)~
Z[

~w
+

sin(2n+l)0
* >,/‘-——2?b—1

. ——
12?Z+I )

(57)

(58)

where.—....

By the theorem proved at the end of part II ~n re~resents
.a “ueries,”OZ qagni$ude.s.,decrea,8,~~g wit,q ,,,+. ,,!Chus the expres-
,Slbn ‘

~ ‘sin(2n–l)fI
21 2n—l— J

+ sin:hzbzlQO

and ~ approaches l; or , in other words , as T approaches
?-o$ tends’ t o the value
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1 E[

sin(2n+l)U
=

1

sin(2n–~+__2ql_ ,
~n—~

and the same limit is approached by tne more complicated 4
summation (58) entering the formula for the coordinate y.
Trapqf orming Is.>. into... .,.. . .. . Q -.,...,_.,.. .....

I= — sinfi+ 2
E

sin(2n—1)0
2n—1— ‘

yields
N

2
z

sin(2n- 1“IL’
2??—l—

1 .

xl

Rlinq=02i
z

g—-(?~-l)(f+i4

2n—1 —
1 1

~+e–/–i5

=ltlimt=Oilg——
( )

l+cos~—zsidl

l—r(-i5 = It ilgl—cosO+kiuO ;

indicates that the real part of the expression ~where R
must le taken. It can be readily seen that, for a con-
tinuous change of e from O to e, ‘

1+cosO-kinO

v

—.

‘gl—cosfi+isine
l+cose “2

= Ig l_~~.ee
— #—

?

and therefore
m’

~
z

sin(zn—l)fj z
~n~ = * 5’

1
depending on the s ign of 0 ; thus_-—.-. —

1=*~—fjin(j.
In view of the importance of the relation obtained,

more rigorous method of its deviation will be presented=
Starting from the equation

m

~cos(2?a-l)e=’=

1
and integrating it within the limits o to 6 results in

m 0

z
sin(%J-110,.

J

*sin%nOO—=
?n_l smOdO(J””

1 0

m e

lim
z

siu(?tt—1)0
= ~ limp,==

“J

“sinpOO
t)tt=m‘——2n-1 d =3- ado”

1 0
-*- . .

But %his iirn~’ij as” is ‘“kriowfi,”equals- ~ if ~~@ --1s positive

‘nand - - if it is negative. (See reference ‘7 , vol. II,
2

p- 233-). Hence ,
m m.

I= —sinO+?
E

sin~2n-1)0
=—sinO + 21im,,l=~

z
sin(2n-1)0

2)t—i- 2?a—1
—c~~—-sinljt

2
1 1

~., . ....m-m,,,.,,.—.—.. ,.-,——...—..,,,, , ..,..—
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The second series in equation (57), for 7 = TO
approaches the expression

-= .... !
,—. ,:. — ,..

.,

.Ce . . .

Y !sin(2n - 1)9 _ sin (2n + 1)8.
xn ;

2n-1 1
T

L 2n+3 .

which is a convergent series for al~ values of 6, This
can be shown by considering the remainder term of this
serie,s: m

Substituting in the preceding equation for Xn its ex-
pression given by equation (49) yields

‘A ‘sin(2n- 1)6
Rn = J-= Sin;:n - 1~-~+ k~#[” jn sin(2n-1-1)97

-1 -1
-1

2ni-1

where k is a $inite number and Xn a proper fraction.
Hence limn=~n = O.

By now putting T = TO in the formula for the coor-
dinate Y, the equation of the jet boundary is arrived at

1
‘IT

where the upper sign of corresponds to e greater
z

than zero.

If the width vf the infinitely distant part of the
jet is denoted by 2b, then

211~(1- T* )P=Q

for d= is the ve$ocity at infinity, I? = PO(I - T)$

m“
lTy = ~ ~ ‘-sin(2n - 1)6

,L
1

sin(2n + 1)9
5< ‘, 5- L,—-K:T-. -, 1‘D (59)

,3n. ,+. .1 -,
1

In order t~ determine the jet contraction, it must
be noted that, for the conditions under consideration.

., ( 1-)‘o q2p + I ‘ the contractiosa OCCUTS at infinity as
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in the case of tho outflow of an incompressible liquid.
Thus, if the maximum contraction were at a finite d3s-
tance from the orifice, it would theh be followed by an
expains.fon~ The streamlines would be turned by the con-
cavity toward the inside of the jet; the pressu??o would
drop from the mzrfac”e inward and would reach a minimum
at a certa%n ~e$nt on the line of symmet~y, A.t Lhis
potmt the velocity would receive its maxizaum valuk, mhtch
result is lmpgssible~ Thus the cont%acLion will he eq-ml
to the rat$o of the width 2b at infinity to the width
2a of the orifice of the vessel. This-ratio is deter--,.,.’ )“ .“’.”’
mined from formula (59] b~ 8Ub8titUtifig 6 = f, y = ~a,

and taking the upper sign of the first term on the right-
hand aide. Then there is ubtqtned

whence the contraction ia

b m’- = _-.-__-v.---__.———
a .

(60)

‘n+ 8: (.l)n-x ~
L 41F - 1

‘n)o
1

=J( )
n-L n

~he series S -1 =n,o must be con-
4n2 -- 1

vergent since it is an alternating series with numerically
decreasing terms. Another may of proving it is by substi-
tuting flq’ ‘n,o its expression, formula (49), of the pre-
ceding section. T“hus the remainder term S of the series
is found in the form

c=”” m

where it.ls clear thqt it approached !zBro-w$th $ncreasing
n, for k ,t~ a certa$q constant aqd Xn 8 proper frac-
t ion.,.

I ‘._-———–.-— — ——— —- ..
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For To = O, xno = 1
formula

...... ...........- .. .-,,......!
%

,- .—

57

and this leads to Kirchhoff ‘S

II
= .— =0.61 -

a IT+2

This will be the approximate value of the contraction for

m

small flow velocities To compute
,1

(.1 )‘-’-—_!?—_ xn

4n2 --l.

for finite velocities and finite difference in pressure
between the reservoir and the medium into whkch the dis-
charge occurs, use is made of the approximate formula for
Xn*

The li!nits between w~ich the quantity ~ is con-
a

tained are found by taking an ~ven or QQQ number of initial---
terms of the series

co
-

In the first case the positive terms are replaced by the
lower limiting values, and the negative terms by the upper
limiting values; in the second case the reverse is done.
This computation will be made for the limiting case

1To = —.— considering only five terns of the $eries
2s+1

for determining the upper limit and six terms for deter-
mining the lower; Use is Dade of the values of X1? . , .
X6 computed in part II, and the upper and lower limits

of
I

(-l)n-’—-~~n are denoted by A and B, respec-
4n_#;

tively, to find

B
O.5254 2 x 0.4703 + 3 x 0.’4343= --—. . --——— -—-—

3 15 -35
*. ,,.

4 X 0.4095 + 5 X 0,3832 6 X ().3755- --------- -.--._— +
!5q 99 143 -

whqnce, with an accuracy of C).QQX, .



, .-.— ..-

----By-rej-ecting the last tern and adding the possible errors,
A is obtained+ Tha errors will add up only to O. 0003
and will have no effect cn the accuracy desired. He~ce

A= 0>128 + 0.015

Substitl)titig these limiting valves of the summation in
formula (60) yields

, b 77.---n—-<. <-——-
.w+ 1,*4 a ‘n+ 1,02

or , if the computation is carried out,

~hUS the ~et expands with increasin~ ~res sure in the_— —_.i----.—-.-.7-.-— .-...—-—..------.-.---.--$- —— —------...— -.—
JNi&Q?L...QL?...J<...Q..M21_&...!_IA-.L+:!-&YE ,M&X?:. I-ts extreme dimensions
ia Kpld”;kape o.~“!-X ~C ~~4:~ C ‘?4 X 2a whzre 2a as
before denotes tl.c i~iith at the orifice,,.

An a.yprJxima.te functl.onal. tornula for the contrac-
tion ‘1s oltair.l;fi.by making use of the approximate expres-
sion for the function xn given by equation (45) , which
may be changed to

1
$s2

x- = -13 S-—-K

nhere

The coefficients L ,
and have the values

L $= -— ---
1 - $8.. .... ... .

2

N
-... ——.---—.-..————.———
2n(l - @S) + 3 ~ (~ + 2)8.

Ivi,N do not include the parameter n

2f3+l
M = - ————+.-----”

I+. (3F + 2)s

N = 2(2p + l)J
1-.9s 1

--, .— . -——. 1
&l+ (tip.+2)s 1“-psJ

.:
...,.

. ,,, . . . ...--.-.— .— ----
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If, as before, it ~s assumed thgt. $ = 2.5, there is
obtained finally

where
6+!!s

.
p= —

4—1{)s
The series S entering equation (60) readily can

be computed by setting
m m

[-
s=~(–l)”–’+x),= 1 : 2;’s’4(Q—-5S)]Z

,(–1)’’–’4nr_1+

1 1

(61)

where for simplicity so is replaced by S0 The
summation in equation (61) for S is of the form

first

[
+1 1—:—: 1 1 1

1

1.
4.+: ,, ~+~+y—y—”””” =~’

It is necessary now to return to the comm~tation of

q y:)=Z( )_* R–1 ~:+’=i) ;
The particular case of this series corresponding to the
value M = 1 will be the second summatioa in the equa-
tion for Se And a(~) may be expressed in the follow-
ing form:

1

~
G(p)= “~(—1)”—$:-qd.

b
The series under the integral sign can be summed- Thus

Z( )—1 -’~p–l
[

—t;*+33 5+E’7 7 91 1

t_j’_~ t“, t’ ~’ t’+.....
-—

Since the series within the brackets Is absolutely con-
vergent for t<l, the order of its terms may be
changed and..thls gives
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Thu S

,.,. .. . . . .. 13

4i7(p)
z

= 4 (—l)”–’
s

hi ““’

(~p)(L2-1) = ~ – t (1–i)arctg~di,
o

or, by integrating by parts,

whence

4U(1)= ; — ; + ;lg2=o,5437.

When the results are added, there is obtained for the.
contraction

brc
)

a– = ;+%8 1

~2~[1,0874–81s(p)]+–2~k + 2+19s08&2-5so-2(2-5SO)
}

(63)

30s20—.+ (?_ 5Q28W>

6 + 9s0
where v = —.— , U(~) is determined by equation (62)

4- 10sO
and @o by the ratio of the presstiro in the vessel to that

To
in the free space, so = ——— which by the formulas of

1-’ ?0
part I is

7

: =(l–TO)–:–L(l+SO)’ +~=(l+so)!
.-—..
Of greato-st interest is the jot con,tractioa for a pro8”-

sure. near the limiting value - tha~ 1s, for Whi’ch the ‘vclea-
ity o-f the escaping jet is equal to tho velocit~ of sound
propagation.tg a gas at rest of the same physical ●tata. Thiu
limiting pressuro corresponds, ae has been shown, to th. valus

1
To =

1
●o=- and has the value

28+ 1’ 2$ ‘o -’*6+ $Yp

= 1.99,P,1 - tp.qt ,,i~,:1=8,9atmompherem - ~ffth~ Proc-r., *a
the fres medium is ●qual t-o atmosphere. ‘“”’

6+9s0
F=—- 4—10s0

ie 88t tn formula 80 = & = 0.2, the rooult 0 v = 3.9.
2P

To compute accurately the deffnite lntogral~

..
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-., ,, .

for such value of v is rather laborious. In view of the”’”
fact ,hnever, that this,entire computation is of an approx-
imate character, the problem may be simplified: namely,
comput e j(4) and j(3,75) and then because of the near–
ness of the values of these int6grals, find j(3.9) by
simple interpolation (assuming proportionality between the
increment of the function and of the independent variable).
There is readily obtained

‘“t ‘ .,.,

1

!
tll/4

j(3.75) = _—
( )

at=4’LLL 2-” -+/2 lg Cotg ;
l+t G7 11 Jzo

= 0.150C)

whence j(3.9) = 0,144; and by equation (62)

4U(3%9) = A –,--- I-r i’ 15.6 0,144 = 0.212*
8.8 8.8 x6.8 Krx ,5.8

Substituting this value of o(~) and the correspond-
ing so in formula (63) yields

..,,

8S = 0,5 + s X ~,ofj’?~ ~~ X’ 0.424 = 1.08 . (64)
29 145

the mean value between the limiting values of the series
8S obtained. The contraction then i$ given by .

b Il.—== –-— =“0.74
=-..-,,,.., ,,, a m+l.08,.,.,,,.---—-.—___ ---—-x-

*Th.e procedure for checking is as follows: Compute
the accurate values 4u(4) = 0.2079 and 4rY[(3.75)= 0.2193
whence by interpolati~~ again it is seen that 4C(3.9) =
0,21241 a vazue agreeing with that already obtained,
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!lhis eoef~icient decreaseq with decrease in the pres-
sure in the res~rvoir because of the increase in ~alue of S*
This decrease IS sufficiently uniform, as may be seen from
the table:

.. ..
so 0,2

I
0,182 0,154 0,137 0,117

~ 1,89 1,79,, 1,65 1,56 1,48
P1
b

(65)

0,74 0,73 0,71 0,70 0,68
i

y 3,90 3,50 3,00 2,75 2,50
I

Finallz, the exprestaio.n for the quantity of outflowing
gas is given by

E=2a .yz%Jl+%)!
where PO is the density of the gas in the vessel (at a

far-removed region from the orifice) 2a, as before, is the
width of the orifiae and a is defined by the formula

h 7–1,a
= ~—3?o

where

y=l,40=l+;.

It is necessary first to consider the case of the
outflow of a gas from reservoirs with various pressures-—----
into a ~ace where the ~ressure is const~g~ (e-g., into—- - -— —-- —
the atmosphere).

—----- --
Then

_Y qfi,a
“1’-~ PI i%

and the final formula

or, again, if Y = 1-40, $ s 2.5

-+J/(i’f[l-(:flcE=2aV’’,pOa
.>

.“

(66)

(66’)
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Since the contraction ~ is a function of so and

therefore depeaids on the ~ati~
gg

with constancy of
Pi’’’”””

the ratio, the discharge quantity #f the gas $s propor-
tional to the square root of the density or inversely
proportional to the square root of the temperature.

Now suppose that the state of the gas in the resea-
voir remains u?achanged and c~nsider the flow into a med-
ium of varying presaur~t The velocity of sound in the
gas corresponding to the same physical conditions at a
great distanc~ from the ~rifice is denoted lay co. Then

co = q = %ia;r’ =Wi-=--u-i- ‘J’
and tae formula for the discharge may be g$ven a8

or , by substituting ‘Y= 1,4,

In this formula for ID only the laqt two factors
that depend entirely on the pressure ratio varY. s..

As regar~.s the jet contraction or the &&.p@~~gg
c~fi~ ae the magnitude b/a also will be culled,.
it is accurately determined by formula (60) arad approx-
imately by formu3.as (63). I!’oran approximation of accu-
racy up to 0.01, numerical values have been given of

., .,, this c,oefficlent for the limiting pressurq and several
other smaller pie”s’sures~ 1’% iq found that a practical
result of the same accuracy $s obtained if, instead of
the Gumbqrqome.. formla (63) , the following’ expression
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.. . . ..

b ‘l-r
* A ----------=-= (68)

a n+2-kso

where k is a certain constant. This f.orpula gives very
good values of the contraction for sfiall difference in
the pressures between reservoir and free medium = that is,
for s near zero; for = O, the values of b/a by
(60) and (68) agree with ~~e ICirchhoff formula for the
$et contraction. The coxaetant k is so determined that

for
1

= 0.2 the results by (68) &nd (63). agree.so=— 2$
For this it” is necessary that

,.

(2 - k)(O.2 = 8S(0,2))

and, s%nce 8S has been,found (in equation (64)) equal
to 3,08, k= 4*60 The values of 8S for the values “
of so given in table (65) are correspondingly equal to
1.”08; 1-16; 1.28; 1.35; 1944. To these. correspond

“1.08; 1;17; 1.29: 1.37’;,1,46

numerical values of the binomial 2 – 4.6s0 entering
formula {68) in place of 8S.

Such difference has no effect on the results for the
second decimal accuracy which has ‘beeu assumed.

The agreement will be even better if the discharge
coefficient is expressed by the formula

.<

A b _.__.._:__..___==-= (69)
a. ?l+2 - 580 + 2s0

The ser.’i.esof values of the function 2 - 5.0 + 2S02 for
the same so will, to an accuracy of 0.01, be equal to
1.08; 1.16; 1.28; 1.35; ~nd 1.44, which are equal,
respectively, to the above obtained approximate values
of 8S entering the exact contraction formula- Thus ,
formula (69) or (68) for k = 4.6 quite well expresses
the function ~ and may very coaventently be apglied for
practical purposes, The discharge formula (67) for the
assumed round values of y = 1,4 and ~ = l/(Y- 1) = 2,.5
tak a sufficiently simple form if the variab~~ SO is
introduced in it. l?be latter, as has been shown,” is con-
nected with the prgssure ratio po/pl:

,



—

By transforming equation (67) in this manner, the discharge
formula is obtained as follows:

—
..,, ,. ‘E=2ac.p,,A(*o)3.’ (71)

It is noted that of the two simplified formulas for A

the second, (69), is the more rational. Thus , to turn for
a moment to formula (60)

h
x=—

E
n

x+-8 (—1)~—’47_1$nto

and substitute in it for ‘nCo the trinomial

z,,(0)+SO.T’,,(o)+ ‘;2Z’’J!)),
expresses approximately the function xn. From the equa-
tion for ‘n

:C’ns(I+s)+z,,p.s+nrh%(l — 2#s)=(J

which gives for Xn(o) = 1, Xln(o) = -p

Substitute these vaiues in the above trinomial and compute
the series S, entering the denominator of the formula for
A:

but
,, n

(—lj”–’4n2_, =;;
-

1 I

z
n

(—1)-’ -.—....—
. Jz(4n.’–-l)(n+l)= *n,:-ldt = ~l+f;]~_~))/—l..~~”

[ )
arctg~’td{,

() (,
or “carry out the integration

.

z
4 (—1)”’ l(4n2 ‘1—=

4 X—2
l)(n+l)

#._T =0,5437;

whence

8s= (2 l-–p.so— p2.2

)
*s. +~(2P+l10,5437s,~

*. ,.Ass’umeas before ~ s 2.5, which gives

8S=2—5S0.1,9SOZ’

and
z

1=
7C+2-5SO+1,9S02“
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Limiting to an accuracy of OsUl~ consider this formula
identical with (69)6 ‘

,.. .
It is considered of iaterest, finally, *O call the -

readerts attention to a very simple connection between
the variable so by which all the characteristic con-
stants of the problem and the temperature of the jet is

,, expressed, Tor the density and the pressure within the
gas flow the formulas are:.

p = po(l-?)p

p = “kp~ = kpoy (l-T)Py = po(l-?)py

●

a“nd stnce by Mariotte and Gay+Lussae~s law P/P = RT,
where T is the absolute temperature at the point con-
sidered the foregoing equation may be rewritten as

T 1—=l-?=—
go . 1+ s

since .s = ~ (see pt. II). Applying this reia%ien to

the part of the Jet remote from the orifice and denoting
the temperature of the gas there by TX yields

To- Tx 20-91
TO = —— =0 = ‘— (73’)

To ● !2%

—-

!Mis investigation on the outflow of gases will be
supplemented by comparing the results obtained on the one

.% hand with approximate theoretical formulas applied for
computing the discharg~ and on the other han~ with the
results of tests, PWri~ly empirical foraulas are not dealt
with althovgb some of. the latter wall ex~ress the phenomenon
within certain limits, as, for example; the formula of
Farenty (reference 8)- ,.
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Yor a rational basis of the approximate theoretical
treatment the adiabatic law was assumed (also in this
inv-es”tigatibri)-th”6”-Ss-S”u.Eiption”being made- t.hat.the. out-.
flowing jet at a certain distance from the orifice has
the maximum contraction and that at the points of this
‘contraction the velocity of the gas particles is constant.
As a result the following formula is obtained for the
discharge formula:

(67a)

where S is the orifice area and ~ the discharg~-------
coefficient equal to the ratio of the area of the con---—-.—.-__..—
tracted cross–section to the area of the “orifice,,

The above equation does not differ in form from
equation (67), the only difference being that the dis-
charge coefficient was not determined for any, or even
for a particular shape af orifice, It has usually been
assumed that it has a constant value depending only on
the shape of the vessel and orificee Such assumption,
as is seen from the problem solved here, is far from
true. In this case this coefficient, for a change in

3A from 1 to the limiting value 0,53,
P.

increases from

~*61 to 0e74~ The increment thus constitutes more than
21 percent of the lower limiting value, If the orifice
were round and n~t in the form of a slit, as i,nthis case,
a still sharper difference in the values of A should be
expected, for then the lines of flow would converge toward
the orifice from all azimuths and not from two as is true
in the present case, For this reason, when it was attempted
to qpply the discharge formula with constant
terinination of the true discharge,

A tO the de--
experiment did ~ot turn

out to be in agreement with the theory. In view of this
Parenty (reference 8) relying on the tests of Him (refer-
ence 9)’ assumed that to apply the formulas based on the
adiabatic law of pressure change to flow’ discharges from

., ozifices was. ,5ncgr.Tec$,e.,,.H~wev.erthe results of Hirnls
tests which he presents show precisely the increas-e in the
discharge coefficient A which is predicted by the present
theory. The possibility of such a variation was foreseen
by Parenty but having remarked on it gave it no further con-
sideration. since he had no means of making a quantitative
estimate of the ipcrease in A@
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Another fact is considered here that is of interest-
Having obtained the discharge formula (67a) Saint-Venant

,, called atte.n.t.ion.t.o...thefollowing paradox- If this for-
mula were applied for any ratio of pressures in the ’res-
ervoir and the open medium, the discharge, increasing from
zero, would pass through a maximum for a certain pressure,
ratio and, tkereaftbr should again decrease, becoming zero
at P1/Po = 0.0 The v,alue of ? for pl/po ‘“c’orrespondifig
to the maximum, dischati’~e is determined from the condition.

hence

This is just the limiting pressure ratio correspond-
ing to the instant when the gas in the cont,,racted part
of the jet moves with the velocity of s~urid propagation
at that point, as remarked by IIougoniot (reference 10).
This condition cannot of course occur in practice. When
Saint-Venant conducted his tests on the flow of gases he
found that on lowering the pressure in the free medium
and varying the ratio P~/Po from 1 to 0.5Z the discharge
increases; but On further lowering Pa” the process be~o~es
regular, there being no further increase in the discharge,
This surprising result was long looked upon with ddubt but
Hirnls tests, conducted not very long ago, confirmed the
results of Saint-Venant with the difference, however, that
Him observed an increase in the discharge beyond the limit
indicated by ,his pr.edecessoro According tb Hi-rn~stests
the discharge reaches the maximum value for PI/?0 = 0.26,
approximately. The change in discharge on lowering PJI’o
from 0.53 to 0.26 is, however, insignificant, for which
reason this may not have been noted by Saint Vetiant in his
.~eg,s detailed ,observations,-.,, ...”...A.,. ...----... ...

If it was attempted to apply fQrmula (70) for A
determined by relation (69) beyond the proper limits of .
its applicability the ‘same paradoxical result would be
obtained except that the maximum discharge would corre~
spend to a value of P1/Po somewhat less than 0.27, a

—
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value very close to Mir’nls limltw This interesting agreem-
ent shows that the present formula expresses sufficiently

-,.,----well-the’ investigatedphenomenon in its essenti’alfeatures+

It is now natural to inquire into the character of
the motion in the case where the pressure in the free
medium into which the Jet discharges is lower than the

limiting: that 15, if = ~ 0.53. If tt is aseumed that
P*

flow remains steady with continuous change in the velocity
and pressure within the boundaries of the moving gas mass
the region”of the variables 7, Q would be in the forin of

a sem$eircle of radius > ~~q Thts is the very region

considered in part I where it was shown that steady motion
of the type that is of interest to us was not included in
the number of possible motions. Hougoniot( reference 10),
states the follotiings if’ p% < 0.53 p. the escaping Jet
is divided by the surface over which the velocity of the
particles is equal to the velocity of sound, into two paxts,
the pressure in passing through this surface changing dis-
~oiltinuously; above this partition surface in the jet the
pressure is equal to O*53 p. and below it is equal to -pI,
(This phenomenon reminds Parenty of the separation from
solid bod.ieso) But the flow of the gas is considered as
steady in both parts of the escaping jet and the surface
of pressure discontinuity as everywhere normal to, the
streamlines-

This latter supposition appears highly improbable
since the character of the metion in the upper part of
the flow should radically change immediately after the
pressure in the free medium.passes beyond tha limit of
0.,53 @o* zn fact, first of all it can be easily shown
that the width of each elementary tube of flow will be
a mi~imum at the point where the limiting pressure occurs,
This is because the cross-section is determined as the
ratio of the quantity of gas carried by the tube divided

by p. ‘~(lw.?o)p and this denominator passes through*
a maximum at ? = -~—e Therefore taking the tubes of flow,,..,. .. .,’,,.,, 2&t3
normal to the line

~=2k
a minimum discharge of gas

from the vessel shall be obtained for the case wliere this
line is a segment enclosing the orif$e’e. The discharge
coefficient will then evidently equal 1 and, therefore “ .



in passing through the limiting pressure in the receiver
this coeffieieat,..qgd..th? gas discharge should immediately
i,ncreaee by more than 30 percent,”’ a cond$tion that is in
entiie disagreement’ with qealibye.

It is a$sumed on the other hand that the phenomenon
could. be explained in the following way. Together With
the quthors referred to it is. supposed that the jet is
divided by a certain boundary surface on passing througli
which the pressure changes vex$ sharp3y* It may be
imagined that the trace of this surface on a plane par’allel
to the flow as a curve quppo~ted at the edge of the orifice
further on the curve resembling the contour of a tongue of
flame moves into the open medium. Above this limit (inside
the vessel and the adjoin$ng part of the det) the flow will
be stable and the pressure drops from p at the far re-
moved parts of the vessel to 0,53p. on ~he described
boundary curve.” At the remote part, however, the jet
forms waves,* These waves have an enveloping boundary
curve- In a very thin layer of this part of the jet ad-
joining the curve the mean pressure will be K 0,53p. and
the velocity of propagation Of sound c% :< c1 being the

same velocity for the boundary layer lying beyond the
boundary curve- The lowered pressure tends to be prop-
agated be~ond the boundary curve, following along the jet
in the form ~f a plane wave, But this wave is carried
backward by each infinitely thin jet element and. since
the velocity of the gas particles is also c1 no waves
are observed in the upper parts of the gas flow- In order
that the boundary curves may serve as an envelope of the
waves approaching it, ~t is SUff%Cii?~te as it appears tO
assume that the velocity of th? waves normal to this lia.e
is the same whether the wave moves upward or downward. If
A denotes the angle forraed by ‘a jet element with the bound-
ary curve passing through a given point, then having deter-
mined both nor”mal vel~cities by Riemann!G rule equating them
and applying very simple hydrodynamic considerations there
is obtained—.-—..— --.-—— -.-——-- —-.—.— -—--——-—
.< *These waves have been observed and studied recently

- by Emdeno The results of his tests are described “in rafer--
ence 4, The waves appear immediately”after the pressure
in,..thereservoir drops, below 0053po: their length increases
with the lowering of the j?i’4$surci In”the reservoir, .Emden
also gives a theory of the phenomerion which, however, ia
entirely unfounded. It is sufficient to say that notwith-
stand-ing the existence of waves Emden considers the pressure
throughotit the Jet ae c~nstant, which .of course is impossible,
and makes this assumption the basis @f his analysis. ‘
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sinA = -A-ca

71

.. –,.,.,, ., . .— ., ..,. ~+pl,(.)c1 —
P2 ““ ““’””

If the pressure and densi%y tiaried,even very sharply,
but continuously, Pl:Pz=l~ Thus it is seen that

~& tubes of flow intersect the boundar~ curve at a con------ — ---- .--------- —. ------- -.—- -- ——-
g@Q~ angle.

With this hypothesis steady flow above the boundary
curve may be “determined strictly mathematical regardless
of what occurs in the remaining part of the jet, It is
not difficult to show: namely, that on this curve, given

by equation 7 = TO = #lZ the relation holds
?

C$tgx(l-To) ‘&iJ=Q

one sign corresponding to the left half of the boundary
curve, the other to the right half and $ and c.p“denoting,
as before, the stream function and velocity potential. In-
cluding this relation among the boundary conditions it may
be shown next that, together with the other conditions, it
is entirely sufficient for the determination of and *
in the T, 6 regionc Having found Q and @ i? is easy
to determine the gas discharge .per second- It appears that
if this discharge were strictly constant or changing slightly
with change in X from zero to its limiting value, the
explanation just given would be near the truthe Incidently
it may be said that the limits within which L may vary are
not wide; this angle will not be large. For this reason
the relation preciously ‘given between ~ and q in all
probability will give a result not deviating too much from
that which would be obtained by simply taking v = *$
along the boundary curve. A small variation in the dis-
charge may also be expected from the consideration that
its value will depend on JsinAds extended over the
boundary curve. This integral is evidently equal to the

I. total. .len>@h of this curve q+u.ltipl.!ed.,by sin~, and its
length will decrease with increasing X, It’may’b& noted,
finally, that in assuming the above explanation of the flow
phenomena there is obtained an entirely continuous transition
from the problem solved above to those cases where the given
analysis is inapplicahleq A mathematical treatment of the
proposed hypothesis is intended ip the near future.
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PRESSURE OF A GAS J’i$TO& A PL4TE ““””’

The study of pressure of a gas jet on a plate will
‘begin with the consideration of the impact of a gas jet
on a p~ate perpendicular to the initial direction Of th8
Jet, assuming that the jet ia symmetrically divided into
two parts bythe plate, Again the .corresponding problem
for the case of an incompressible liquid is used? The
solution of th$q pr~blem is given $n the paper by
Joukomaky (reference 2). By use of the same va~iables,,
as in part 111,

where m is the angle of inclination with the X axis at
distant points of the two parts into which the set is
divided by the plate. PQr the JCaxis the line of sysune-
try of the jet is. taken, the’initial -direction 0$ the
jet being in.this case parallel to the X axis. -

It will be shown that formula (’71) e~resses pre-
cisely the required liquid flow. Attept%on will be
directeil first to the range 0$ complex variables “w and
d + i$ which correspond *.o the flow sketched’$”n figure
5, The reg.io,n w is b,ounded by two straight lines,par-
allel to the real axia$ symmetrically placed with respect

to it at’ a distance 9* In the sketch the outer “bound-
2

aries of the$et lEAS and DCS correspond to these straight
“,.. ,,lines.j. 2he*,-flow.boun@ax$@s..Q3Q gtnd,.,&XO,,cor,reqpond *Q the

upper and Iomer sicles of the positive part Pf the real
axis of the region .w; the pQtnt O cor~esponds to w ‘= O+

Theregioq d + i~ is bounded, in the first p$ace,



*

,

by the segments of the straight lines parallel to the
‘n

‘axis and haiing coWiWi’R&~es 0 = ~ and 6 =-.; lying

to the right of the imaginary axis; in the second place,
by the segment of the imaginary axis lying between the
abov~entioaed parallels. On the sketch the straight

line 8 = ~ corre’sponds”,tothe right-hand part of the

plane and the line 6 = -’~ to the left-hand part. The

segmbnt of the imaginary axis included between the points

e;= and 0 = m corresponds to t~e boundary YA of the

flow, for here the velocity is Vo s 4 0.= The segment
symmetrical. to that just mentioned corresponds to the
curve EC. I#inally, the boundary CID is represented in
the $ ~ ifl region by the segment included between the
points Q = ~m and 9 = O of the imaginary axis and the
curve EAt by the segment bounded by the points 0 = O
and 8 = m, .

Wow, proceeding along the boundaries of the o ~ ie
region, the author will @ow that the point w will then
describe the abovenmentioned boundary of the w region.

With the point 6 = ~, t9=~ as the starting place, it can

be seen from equation (71) that for these values of $
and 9, w=2kni, where k is an arbitrary integer - it
will be taken equal to zero. If now the point 4+i9

moves along the line. 0 = ~, then w moves along, its

real axis at the upper side pf this axis, since for 8 =

;-~’
then$ at infinitely small c , WI = k c , where k

is some positive quantity? when the point d+ie arrives

l-r
at the position d = O, 0 = --, w will have ‘passed along

Q
the segment of the real axis from O to ql =-- lg(l- sinzm).

‘m
As4+i0 moves farther along the imaginary axis, the

,point ,W,,,y,illcontinue its Mot’ion along the VI axis in
the same direction up”’to” cpl~’&’ correspondirig’ to
e

+=0,
= me In passing th~oug~ the point 3 = O,” 0 =“m, t:ne

logarithm in formula (71) receives an increment 7 fii and
for 8 = 0, m> e > 0, w wi31 tiove forward along the

I
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straight line w = i; from ~=%~ to-w*i~; this positicm

v- corresponds to 6=0, In passing through’ the point
* =0,0=0, the logarithm of formula (71) will %eceive
an increment 21TI and w will pass discontinuously from
the upper boundary of its regioi to the lower and will

-—
mov? along it from Q 9~-tzto+mmiafj

2
~ +“ ~~

moves from O to - inh Yurther, as ~ ~ i6 lnovQ8
through -in, the logarithm increases by -mi, m jymps
to the poipt x ~ and aleng the lower s~d~ of the po~i~
tive part of the cpl axii returns to its initial poai- “

tion as d + i6 moveg from -im te -t; and frixn

--i; ta C8 -i.; along the boundaries ef its regtoa.

Thus the fact is shown that formula (71) is an ac-
tual solution of the probl~m of the impact of a liquid
stream on a plate. In order to solve this pro%lem.fom
the gas jet, it is necessary to proceed according to ‘the
rule given, The expression w is expanded into a $eries.
and its imaginary part separatied~

Thus ,

2TTli $+ie---- =21gsin ——--- lg
(

++iQ

Q
sj,n~--+—.

i )
E!lrlzm

i

= 2“ lg sfn 4+ie
(

d+ie
—----- - lg cos2m - cos32——————

)
+ lg2

i 5

Introducing exponential functions in place of the trigo-
nometrical transforms this into

Ill: — .——— —
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or, after reducing,

and, finally, for .9 ~

This is the expression of the stream function in
the variables ? ,,@ for the liquid flow. Hence for the
gas flow the same problem should be solved by the formula

According to formula (24) of part I the following
expression is obtained for q:



———
I

If it ia a~sumed that Cko, then, as in the case

of the liquid flow, T= e:= o? q!=o, and .* = O,
..

The series for cp and Y are %bsol~tely and,uxi-
formly convergent for.any; T < TO as is clear from the

gener&l considerations of part II, a~ii tlierefore t$e
problem is solved bythe relations (72) and (73)*

The width of the plate and the pressure on it will
nQ~ be determined* The wi~th of the plate ~ill be ‘e-
noted by 2 t. Then ? is found by substituting” in the

.IT
expression for the coordinate y the ValueS. 0 ; ~ ,

T = T 0’

But

In eonputlng the integrals entering this series, it is
noted first of all that

— . ..-. . . .. ..-...—. -—-. . . .-.—.. . .—--- —.-—.- ...—..— ..----.—.- ..-— -.—.——



and on the

1063 77

basis of the equation for Zn

d
=n~[l— (2p+l )7](1—T)—$—’ +~TW-+—%

Hence

On the other hand

and sxmce on the basis of the differential equation for
the fumction Zn

theref ore

Comparing this relation with

or

,Since

(75) results in

I -:Lb



with ijhe, aid of formula (’761), equation (74) can be
written in the form

>. -,

33

1

., >.. (n). ” -,

?he first of the summations entering the above formula
is an absolutely convergent series. It is computed as
follows:

* m

1 1

1

m

+2)1
=
- SE(–1)- ~–*n_l [COS(2)?.— lhn—&in(2n—l)n~]dt=

,.,. 01 . ... . .
,...,,

ltxl
,,,.

.

n

.@-,
= t (–l)W–’ &_l dt,

.

.

‘L



Since ~ (-1)”-] ::;;, ;=arctg~~ the integral obtained
1

-----1.
is expressed as follows:

1.,-.,------

s

,“. .. -.

x=
~ 1 @+h(/t

tarctgte-~mdi= ~ arct.ge-’m—-
J2 ~ ~+fie-x’”m-

@

1
e“

im

= ; Srctge-i= ; + ‘T
s

dt

~ l+tae–:~m=

Returuing to the initial formula for K , it is seen
that the first row of its new expression gives the expzea-

W

\m(–1)-1 cosfn-;h’~,sion in finite form of the function ~

1

and the coefficient of i In the second row is equal to
*

z
siIl(2t&-l)m.— (– 1)”–’ @_l -7 then (78) yields

1

and, finall~.

E().
l-cos2nW.

‘&cOsm)” ‘7’)”
—1 ‘–1 ~:~ =?,., .

*

?9

Making use of this. formula, equation (77) is fi~lly
trazwf oraed int e the f ollouing relation



I

80

(80)
,, . .. . -W . .,..,-.., .,, ,,‘+~(–lY-’ ::& (1-ios2fi~)}.(1-70)-~.’....,,.

1“ “,
“The ser~e,s in ,tho above formula must be convergent. In
order “to prove this the remainder term is set up, making
use of formula (49) of part II for Xn ● Where results

,. ,.

It is clear that the limn~ En = O , since An and An ~

are proper fractions ●

,,.

By passing to the computation of R - the resultant
pressure on the plate - the pressure behind It Is ~enoted

by p~ and it is noted that

But

pa??=k?oqI-Tp+l, sin- p=po(l—-+~,
hence the Integral entering the expression for R - it
Is denoted by T - on substituting the value of’the’
.funct Son q, becomes

m

T. ~; z{ l—cos2nm
(–1)”–’ ~tnyn,o x

..,, 1“ 0.

To

(

xf&7)~+’g(l-T)-P #y,,+~”+]
)

--?I. :}”~.w%...... ...., ,..,,..e. ,
O

*...?: .-,,$.}?+..:.,,,,.,.,+, ..,, !,,..,..
Iurther, usiqg the:,e~pression

,.k, ,’
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“there is obtained

. .

T, ?,

\

F+ ‘J(%o)+(p+l)f(l—t)%)d%= “(1—7)P+J(1J=(1—70,

‘0 “o

By (76)

hence

Substituting this expression In the @urn to b. oo~ted,
ylelall

81

The first of these terms on the basis of (74) gives the
magnitude

kpo7(l—To)~+ ‘Z==pli;

and therefore making use of (79) and nctt$ng that

there is obtained

T=pll+Q$%l-town).
.,, ,,,

The abov& formula fo? R yields ... ., ,, .

(81)

.,



By making use of equation (80)’and Considering the relation
.J~;~; k’V.

- the” v“elo-city“of the jet sit very” -dl-stant-
-P

points , po(l - TO) ? pa the densi+y of gas at the
same yoints , the required formula for 3 is.obtained;

?he angle m may be determined by equation (80) in
which all magnitudes except m are given. Thus

where PO and PO are the pressure and density at the

critical yoint of the branching line of flow; whence

Yinally, the difference between the values of $ on the
jet boundaries (a magnitude will be denoted by Q) is
determined from the condition

where 2b is the wtdth of the jet at infinity, The mag-
nitudes ~? Vo? pa and pl should, of course, be consid-
ered as given.

~he resultant pressure, after m has been found, is,
of course, most simply computed ?Jy formula (81}, It tiy
be renarlzed here, incidentally,.that this focmulams,ybe
derived very simply from the momentum theorem, It wiil
then be foulzd’that the formula in no way depends either on
the s.haye 0$ the p3.ate, provided that th.a latter is syrn-
aetrical with respect to the center line ox flow, or on
the relatioq between the lmessure and the density. Thus ,

*

—
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denote %y M the momentum of the gas enclosed in the jet
bounded on-one side ,by,qt.hgperpendicular section of the
initial jet.at a very large distance aiid‘dfi”the’other- side
%y two similar sections passing through tke distant point’s
of the Vranched jet. The increment in M in the 3nf~ni-
tesimal tine interval ht 18 evidently equal tc

2bpl VoAt(cOS n - l)wO = Qpovo(cos ~ - l)At, since 2b

is the initial width of the jet and Qpo is the quantit:,

of gas passing through its cross sectionper second. The
impulse of the external forces Is given %y -At. By the
momentum theorem there is o’btained

and this equation, after ~implification, leads to formula
(81), For this purpose the less general formula (82) is
of more importance* By using it the second fundamental
problen of the investlgatiop uay he solved ~paroximatelv:....----..L
namely, the pressure of,a boundless gaseous fluid on an
Obstructing plate.

The a~proxi.mate surnuation of the series is started
by eiltering the denominator of formla (82). For this,
the ap~?roximate expression~ for the functions Xn

already used may be used again in the problem of the out-
flow of a gas from a vessel (in deriving formula (61):

2xD=2-5& 25s2 + 30s2 z. —..--.— —e-- ——-
2[2 - 5s) 2+19sn+3

~ 30s2
r

2 1.——--- . — ----
~~L(2-5S)a 2 +’ 19s 1

where

6+9s# = ——---, s = ‘-”,.= ,,. .. . ,,, ,,.,., 4.YJQ8 ,,. 1 -T ,.1
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. .

NJ

[

25s’
2L= +—~s—oo

]1
(— 1)’’–’,}

.(.—5s) 4n2-1 (1–COS2?2W)+

I

m (—1)“-~+’4%”2~+1)(4n’_l)(1:COS2?W)+ (83)

1

[ ]2m(–l)”-%
+30s2 ~2_255)i—+lE ~+u)(4n’-l)

1’

(1–COS2W)*

The series of the first, second, and third row will be
denoted ‘by I?l, ~aj Ms, respectively, and it will be
noted that after computing 193 and Hl, Na is obtained
by Sul)stitutl?lg p = 1 tn M3. Then HI can be con-
sidered as the limiting value of the magnitude N1~:

There ia oBtained:

‘n=h 91=4’

The first of these sums has the value

l+(—I:P=:- ;

the sa~ond may be giren in the form

1 1
and the third in the form

1+1 k+l

— COS))b
. ..E

(–l)”-’=’&:-’ — sinw
z

(–1)”–1Siy::;)m “
,<,. .,

2-’” “’ -
., ~

By the use of these formulas there is obtained for 4M*$
the e.~ression

. ,,+, ,+~slll.1~(-1)”-’-:p,43-,’= (_l y:] l—cos2L~/

1



vhe nc e

k

85

sinm “
2 A5m-’)’’-’tn n)m”-’)m”

N,= — 2n—1
->.. . ,,, , .. -~ _

But
.-,. .,...... .,,

i) 1

k ?;

1 1

The last term is zero. 1?or
in

s

cas2km
J-ii&x ““= ‘Tws(’k–’)n’cos:::(’k-’))nsinm’”m=

o “o

and from the properties oi’ the ~ourier integrals

m

liml==
s

msinm——
cosm

0
Hence

sin(2k—l)in
—— dnt=O *).

.?n

))!

limk=s
f

COS21iW.
—— d)n==o.
Cosm

“o
Thus

,,,
m )8s

EN,’= ‘“(-1) ”-1 -+——
-ln-—1( s.1—COS‘Mm)= ‘!j!!. 1$&= _

*See reference 7, p. 233.

:~
b .



Now turn to the computation of X3.

‘\
t,

.%

.yl=z (—1)-+.j

‘(n+p)(4#- lj(1—c0s2~1)n)=
1

!. ‘The functioa under the Integral maybe expressed in “
.,’finite form through the lower transcendental. Yor this

purpose, consider it,as the teal part of

1“

The integral MS may thea be expres*ed aa

where R is used to indicate the real par% of the cern-
plex q=ntity following it. But

z4 (–l)’’-’n$~””arctg@”tg@”.

Thug
~.

3

s*—ii41V~=R t { (e–’fi’-tnjam?g@guiu(l(l – t)arclgit }dt.

o
~ appl~img integration by parts, there is obtained ,

1 s

[
t?.= t‘–s(e-’’’i-temi)m~~q~iimtit=

SLE,... ... $. i).,,.:.., ... . .,. , ....... . . ..... ,, ,,

.(

,e–mi emi. ”

)

4p 1 #’-’——— ——=
1 1’

arc&Yi+~2fi+~--2—— ~t~~,
p— -- P+;}

4{4—1,
2 0
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hat
—m Le m Ie 4cosm 8pkinm .— — —... -

----i “--– = 4y~—1 4#-1 ‘
,u— —2 P+;

>-.., . . . ... . .. .... . . . ...... .+i]’df’(-=);atvif#”=z

1 8’-’

f

~i ~ 1(l,+tcos2*)t~-’ ~t ~~in2m 1

f [

t%?t— .—— - _, .
‘l+te* — l+Z!cos2m+t- i~2f00s2~+F;

b “o “o

thus ‘.
cow —2 ~“sinm

J,,,=- @=l- [ ( )1
z+2ilgcotg-: ; –——

The integral in the formula for H3 is equal to J* for

m = O. Yinally, there 16 obtained

.

[

:(l+tcos2m)tf’-’*;

. 1.+2tcos2m+ts
(J

m, 4p siwn

()

R m
—.. .—— —

l—cam ‘= ‘--~&_– + J?$~_l I—Cosm l~cO@ 4 2

(85)
1

qql+cos))i)
r

ti”(l—t)f.u
—

4pJ—1 – . (l+t)(l+t’+2tcos2nJ)“-
0

Sett,iag in this formula p - 3. yields finally the value
4*= (~= is the second suuaation eiter.ing the formu”lu (8S’))’..

or,

()
—-”-- =–; +;l~:mhwf$ $–; –~—cosm

(86)
c-i... .,’! ,. _ ~l+cosiz) 1s t(l—t)dt

3“.. (l+t)(l+t+2tCoz%j ;
o

‘The definite integral in the above equat ion is easily 80~

pwted.~ tt is. equal to

(87) .



~verythja~ required for the computation Of 2L by
formula {83) has bees developed and the expression for the
force on a plate for any gas jet caa be set up, Now, COil-

.,— sider the case where the- jet is infinitely wide - that is,
the problem of the action of.a boundless gas stream an a
plate. 11’orthis condition m = 0, since the flow after
pessiug rwnd the plate must finally resume its initia~,
direct%on.

Therefore Gompute

where t!zeexact value of L is given by the series ent6r-
ing the denominator of formula (82) and the approximate
value by relation (83). Using formulas (84), (85), (86),
and (87), there is ottained

iTl 1 tf~
lim .——— lim 4+Tl

—------ = :lga
m.= O1-cosm=S*m= 01-

- —-- = 0.32907
cosm 12

Iv
lim I?3 2M lT 4pl “

/’

t (1 - t]dt-—---~ ~ ..-—.. . .—..--—-.. - -------
m= 0 1 - Cosnl 4W2 _ 1 4(4M2 - 1) 4~2 - 1.

.7i.+-;p.-

0
and s~ilce

lW

[

LJk&t =

.0 (1 * *)3

therefore

Zp+l
1 ~w-l

/’

Ma
_*-..-— .

4 i~t
“o

3 $t~-adt
lilil —2L. = 4P

/
w IT

- ------ -
m= 01 ~%-:i i~-; . 2V + I

-—-—.*———..
- cosm 4(4#~ - 1)

.0

Next ,

lim
m =- 0

+

8L =4_20~ 25sa ~ 30s2-------- . —_- -—-– 1s3163.
1 - cosm 2 - “5s 2 + 19s

[

2 1(1 “i 1 w-~1# p _d~
30s2 — ----- -

(2 - 5s)a ‘-- ;‘z-:-; J —2+ 19SJ14W l+t
o

- ,4J.be lT’. —-----
2#”+ 1 )

= ?(s)
4W= * J?

I
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where

6*9ss=T
P = ~--—-i -—-- , s = so

- 10s 1 -T

Formula (82) takes the form

89

(88’)

(88)

so being determined by formula (82!) :

(y_ l)~ivo a
so = —----- ----

2Y”p~

which nay be rewritten as
a

To
so = ---5ca

%y su’ostituting the velocity of sound c at the distant
poiilts of the flow and the value 1.40 for Y,

For s = O the” expression found for R gives the
formula of Kirchhoff (in reference 2) :

a= 22p1P02 —J-- = 0.44 x 22p~vo2
11+”4

applicahie for the pressure of the flow of an incompress-
ible liciuid. This value is approached hy the accurate
formula (82) for s = O. TIIe gre~ter the velocity, how-

ever, the greater the magnitude ;-wr; , and therefore the

reaction of the gas flow with increasing velocity increases
somewhat more energetically than in the case of liquid

flow. Now , compute the coefficient --~-t.- for the limit-
IT+F

ing value of s equal to 0.2 and for values near the
limit , to an aocuracy of 0,01.



z
— =o,5&Z+P

V. th~ velocity of sound at the distant points of the,**g,

gas jot; if pl, the pressure- In that region is equal to
1 atm-os~hose’: then. in, t,heease of air c = 333 meters per
●.edoa+v

2
----

‘ 0= ‘o-ii -0’1818; ~3’6; ‘o= v
# = about 318-/,w.; j

j(@_O,l’625;k@)~0,508; ~~

I@,1818j=4--l,8l8–~ ~8E 0,808+4.1,091+ 54,64

+-: %109=2,42;~~ -0,56.

Y or 8.=~,
v

10= 0>11762~2J5; V.= T7C= 255m/aw.

#@=%2375; k(p)=0,676.

~0,1176~4–1,176-- ~l~s .0,640+ ‘
4.1,412+ 42,964

+~;? “0,135=2,9~ ~~p +,52.

,K
10

,Sor: So=~ = 0,06!)?,y=2;v,,= ,xc=l!)5,0’’’~,,C,.

~(F)=W~69, W)-%808fi; ,
.“,

3.0t392 .’”
ZT0,069)=4—0,69—*0~V:j5++33’11●,0,50$+

“9. 9

3.069’
‘, +*0,162.=3,34; ‘$-=0,485.

‘2”’”
.V

;0
::+<* 8.=6$ =0,0377; ,~1 ,7% ‘o,)= ,~ C= 144,6rn/,,C; ;

j(p)=0,3578;?@)=(l,8925~

F(O:0377)=’4—.0,377+0,01O=3,63;

z’.-— — =
%+P 0,464.

-.



It is thus seen that the coefficient of the formula
.,.- f.or tlie yressure drops shar~l~ with” decrease in velocity---- -

near the limiting velocities; after which it drops inore
slowly. Thus , when ”the velocity decreases from 333 me-
ters yer second to 328 meters per second, the coefficient
drops from 0.58 to d,56 - decreasing by 0.02 - that is,
3.4 percent of its value. The same numerical value for
the drop is obtained .on changing the velocity from 196
meters per second to 145 meters per second, although the
differei~ce of these velocities iS 3,4 times greater, It
may be noted, moroover, that at a velocity of 145 meters
per second the pressure coefficient is already near the
value vhich is computed by the formula of Kirchhoff

‘m----- = 0.44; the differences of these values is equal to
11+4
0.024, about 5 percent of the greater of them. The total
increment of the coefficient 0.58 - 0.44 = 0.14 is about
32 i~erceilt of its lower value.

Thus, at not too large velocities the coefficient in-- ——- --- ---- - - --------- --- .-.-— ----- .-
the fornula for the ~essure on ~ ~~~~g, QK what is egy~y---— ------------ - .- -—----- --
alent, the resistance of a gaseous medium ~Q ~~g motion in

---- -- -
----- ——- -----—---- -- - ------ ------
j.. ~~ a vlate increases ver~ Elgwl~.

------ --
~Qg~~fore under ~~~~~----- —--.— ---------

condit~ons the resistance at tfi~-~edium follows aQproxi------- -—-- --- —---------- -- --— ---.-—- -------- —
mately the ~uare law.

----
When the velocit~ of not$on of the----- ——- -- .— ---- ----- --- ------- -. -----— —— -—.-.

plate is ilear the velocit~ of soundt howe~q~, lgg U?.fl~S~----- —- --------— ------- -- -----
ante increases in a ver~ marked manner. T,hts conclusion---- ——-”- ---- -- - --- --------------
is entirely confirmed by the available experimental data,
as is shown later.

Further is noted a relatively simple formula which
for the assumed accuracy of computation gives results
entirely agreeing with those obtained by formula (88):

P(so) = 4 - 10s0 + ?Soa (89)

Comi3ute I?(sO) by (89) and hy (“88); and for cornyarfsoil

write the results one %elow the other. The following ta%le
is obtained

so 0.2 0,1818 0.11’76 0;069 0,0377

P(SO) by (88) 2.28 2?42 2,93 3.34 . 3.63

P(SO) by (89) 2,28 2,41 2,92 3.34 3.63
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!i?hedifference obtained in the value of P %y these
formulas iilno way. a,ffects ,the,value, of..the resistance
““-cdieff”icientfor the assume’d approximation.

!i!hefinal resistance equatioa now assumes the form

R. --—----.2--------- 22p1voa (90)
w + 4 - 10s O + 7s.o~

where
2

‘o
so = --~

5C

where c is the veloc$ty of sound propagation at the dis-
tant points of the flow, equal to 333 meters per second
if the notion of the plate takes place in the atmosphere.

If V. is not very large
( )
Vo<gz , the term 7s02

is negligible within the limits

R= l-r--.-.-.-----
V2

IT +4-2---
~z

of accuracy; then

2iplvo~ (90’)

The approximate formula (90) may %e obtained from the
exact expression for the pressure of the gas jet on the
plate iit exactly the same matiner as the corresponding for–
mula (6S) in the previous section. It is not difficult to
show that if in the denominator of relation (87) Xn, o is

replewced approximately by

Xn(o) + Soxtn(o) + y Xoll(())

the cor,~~mtation”ls:’carri~d” out and ‘m is set equal to O
formula (90) is arrived at. The difference will be only
that the denominator will be found equal to Tr~4-l,0so+,~y2soa,

..btit.tllisis of small” sfg-nificance for’assumed accuracy of
,,..

computatioil.

----*--R.
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Investigation will now be made to find what formula
(90) will yield if it is attempted to apply it in deter-,-----,..,..““”=““ii’i3iin&”’’a’ir’”reststA”n-S6 ‘f’o”motion,

.....—-—.,
using It “b’e’yondthe true

limit of its appli.cahil+ty,

The fundamental factor to be considered is the coef-
ficient K

K = -——----.~.—-------
‘rt+ 4 - 10sO + 7soa

.

As lon~ as the velocity” of the plate does not exceed the
velocity of sound this coefficient increases at first very
slowly, then much more rapidly with $ncrea’se in velocity,
as has been shown, the limits of its variations being
given l)y the extreme values 0.44 and 0..58. This increase
contiaues even after so aoes beyond the value 0.2 cor-
resp~’i~ding to the equation V. = c; thus for

V. = 3~c = about 500 meters per second, so = 0.45, K = 0.77;

for 5 ~. = ffi;
so = 7’ = about 629 meters per second; K

attains its maximum value 0,88, twice its value for small
velocities. Further on K decreases and for V. = 2.5c

= about 833 meters per second, so = 1.,25, there is ob-
tained ? = 0.56.

The above results qualitatively are in sufficiently
good azreement with test results. This is all the more
interestiilg in view of the fact that the tests were con-
ducted under conditions very far removed from those of
the theoretical problem cons~dered since, in fact, w was
computed from observations on the flight of artillery pro-
jectiles. The results were obtained from, ballistic tests
by Zabudsky (reference 11, pp. 47-57, table 4. arid fi&.,’.3O)
and were mainly used for the purposes of comparison. The
chail~e in the coefficient K for velocities not exceeding
240 meters pe”r second is “in fact almost inappreciable; it
thei~ starts to grow very rapidly, increasing 2.8 times for
a change iil the velocity of the projectile from 240 to 420
meters ~er second; t,here~f~:~....it,re~l@inE,.,a.t...t9.,E.%rnRrnRlevel,.,..,.,
unt’il’t-lle’tid~~cit”y”e:xcee””ds550 meters per second and then
drops, giving for 1100 meters per second the same value as
for 340 neters per secondq Thus’ the actual change in K
stands out with great “sharpness: the lav of the @ropPrtion-
ality of, the resistance to the square of the velocity
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clearlp applies for.velocities not too large,whild for
velocities near that of sound the coefficient ihcreases.>“

hUCH ‘tiofiera”pld~y~ !fhts-phenomenon might to a-certain
degree have been foreseen- Thus in the theoretical prob- .
Ieu the tubes of flow separate from the mo%ing plate in -
only two d.$rections, while in the flight of an artillery
shell they separate in all meridional planes, $f in each
“of these plane% the motion took place as in the “case under
consideration tihe r~sistance coefficient should vary as ib .

.J.~

Actually the dgv$~tione are not so large, !fhis,is because
‘the tubes of flow sp%ing5ng. from the projectile spread out
and therefork ah.ouldpress less stroongly on the ‘body of
the projectile near its ~ont~urs,, Better r~sults could
not be pxyected for the reason that applled”fornnda (90)
is outside the limit$ within which it$ applicability has
been #roved..

“.

Aside from the ab?ve reasons there is yet a further
deviating factor: namely, the viscosity of the atr an~
its friction at the side of the mov$ng bo~y~ Owing to
the viscosity the$e shoul? be formed behind the pXate vor-
tices whtch lower the pressure In this region; a~d hence
lead to an iacrease in the resistance. Yh$s condition
al”reacly shows up at the smal~er velocities such that, as
shown by the tests of !l!ibot,the coefficient K is equal
approximately td 0~64 instead of 0~44 if the velocity
fluctuates within tlie limits of 0q5 to 11 meters per second
(refereace 11, p. 14), F@ large velocities the effect of
the yiscosity would presumably be not so large.

In concluding this part, a method is indicated for
derivin~ a theoretical formula for the resistance in the
case uh~rc the ‘velocity of motion of the p~ate exceeds
the ve%oc%ty of sound. ~n this-case, for the same reasons
as for the case of a gas flowtng out of a vessel, no cou-
tinuous steady motidn should be expe.cted~ .As in the
previous case, a certain partition surface should be formed
dividing the region of the flow into twb parts in each of
which the uo%ion possesses a diffdrent character-’ ‘lIiis
surface , consistitig of the two sheets shown in figure 6,
will be considered as enveloping the sound waves. Within
the compressed and heated air layer separated by the sur~

..,., face fr~n,~he atrnogphere,the motion will be steady and the,.,. ..,.,., ,., .,, , .,,

varia316 7’ wfl~ everywhere be less than 1——:” on the ““

surface it”self T ~ -wi~ an~ the relativ~*v~l~city of --



,

. -theair yar.t.ic.lespenetrating the layer is equal to the
sound velocity ;~liic’hwould-be obsertibd‘a-t‘this place--in-a
gas at ros~ and which is equal to the velocity of the mov-
ing p’kt e . Cn’ passing through the boundary of the layer.,
into the outer atmosphere, a sharp drop in Presstire, is
encountered; here the motion will he unsteady. under the
same assumption as in the case of the outflow’ from a vessel
it, is found that the angle at which the flow tubes in their
relative moti”on (for stationary plate) intersect the bou~d-
ary of the region of the condensed layer will %e constant
at all ~~oints of the partition surface.’ This additional
condition is sufficient for a mathematical analysis of the
motion within ‘the separating air layer and, therefore,
als~ for the solution of the pro%16n of the air pressure
on the platet It may he remarked that the very existence
of the partition surface anQ. condensed air layer are by
no meo-ns to %e c~nsi4ered as hypothetical, since the ex-
istei~ce of these phenomena has been firmly established 3Y
Mach ancl other careful investigators,

-----------
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PART V
., .,, .,, ,, __ . -— .,. .

APPROXIILATION NETHOD OF SOLUTION OF GAS JET PROBLEMS

If the velocities of the gas flow are sufficiently
belpw the limiting velocity c determined by the equation

T 1 the solution formulas may be presented, approx-
0 = ~Y

imately, in a more simple and compact form by introducing
a certain complex variable.

In part I the following fundamental equations connect-
ing the derivatives 0$ the velocity potential and stream
function with respect to the independent variables 7
and 0 were d“erived: “

These are formulas (11) of part 1. The follow- -
ing notation is introduced:

(91)

where 70 is the maximum value of 7 corresponding to

the Ioundary of the jet, The preceding formulas then can
be expressed by
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where

1-( 2@+1)T
K=—————’—

(& T)’B+l

In the region of flow the coefficient. K varies;
but if the ve~ocities ~ g@ion of ~g~~’are not near.. -— .- ---—— —.
the limiting velocit~ ~

--- —. ——
--- ------- —.—— ~= confined within yg~~ narrow-—---- —-l-
imits

.—.
--—--- ●

First it is shown that K decreases with increasing
T* For this purpose the derivative dlI/dT is obtained:

It is clear that the minus sign is retained, what-
ever the positive value ?, so that the foregoing state-
ment is correct. Next the values of K for the extreme
values of ~ admissible in the problem. considered is
computeda ~hen on the basis of previously mentioned data
K will be included between the boundary values thus
obtained.

1% is necessary to proceed, for convenience of the
computation, from the variable T to the variable
s = T/(l-T) to obtain, for K$ the value

K= (1-2$s) (1+s)
2$

or if @ is set, as before, equal to 2.5

K= (1-5s) (1+s)5

whence $s obtained

.—-——.. —.. —
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-s ,., .,,

-1 —,. 1 1
~o=-

=---
16s 40’

1 1
‘o=—

=
18$ ~’

1 1
fJo = —=—

24@ 60

1 1=— =..
so

32P 80

‘1
so = “~ = —-,

. 5og 125

s= l.=~
o 2oop 500’

1 >.K ?0..?90

1 >’K > 0-9920

1 > K > 0..9957

I. > K’>> 0-9976

1 ~> K > 0.9992

1 > K > 0.99995

The corresponding values of the maximum velocity V.
are determined by the formula Voe = 5CZS0, where c is
the velocity of sound for the physical state of the gas
at the boundaries of the je%e For the preceding values
Of so, if it is assumed that near the boundaries of the
jet mean atmospheric conditions prevail, the following
values are obtained for V. :

136 ; 126; 118; 311; 96; 83; 66Y6; 33.3 ,:.metersper

Second (the. figures are rounded for simplicity; c is
assumed equal to 333 m/3ee). :

The approximation which IS now made consists in tak~ng
K equal to unitye Then there is obtained:

.! .,,,- ... .,
,,,

~= Lo......,.. ,,

h ?je

,,.
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.C-” ,and,therefore.,-,
,.. .,

W=v+i$=r(u+i e)”’ ‘“’’(92)

where a ia determined by formula (91),

It is we13. to consider again the corresponding m~tion,
of an incompressible liquid for the same boundary condi-
tions, together with the pro%lem on the gas flow; plane
bounding walls, flow extends infinitely in certain di-
rections, behind the walls at which the flowing mass
separates the pressure is coristant and the liquid or the
gas is at rest. The problem for the case of the incom-
pressible liquid is solved lq~ the relations$

=q)z+iWz =F(O~ ie),
vodz

‘$ a+i$=lg--——
dwl

where 6 =lg=, e is the same angle of the velocity
T

with the X axis as in the gas-flow problem, Over all
the boundaries *L has some constant value; at the
at the bounding walls 6 = constant; and at the jet sur-
face the velocity v = constant = Vo; and therefore
4 0,= These are the conditions imposed on WI* a
function of the complex variable $ + ie, The method of
obtaining such function is given by Joukowsky in refer-
ence 2-

It is clear that after the function’ J? is found,
which solves the given problem On the incompressible

liquid, the required solution of the same problem on the
gas motion i~ obtained by setting

q?+ iql=l?(i?+ie)

. -that is; simply .~eplacing. $ bY u,; then when the variables
0 and @ pass around the boundaries of their- regloni v
will receive the same constant values as @z: where * = O

. of cwxrse g=o, and, therefore$ T = 7..

After the function q+ iv is found as a function of
u’+ig the coordinates easily can be found as functiops of
the variables u and 6, the contours of the jet investi-
gated can be obtained and the constants characteristic @f



the problem determined: namely, the quantity of garn carried
by the jet and the resultant force on the plates.

“ ‘To-determine the-dependence-of-the coordinates. bn a
and 9 T is expressed in terms of a, From formulzi (91)

dl 1 Ck. (1–T)–9——— —
dc & 2TJ~.&=~’

d (1—%)-P l—(2fl+l)7 ~
—-( —t)+’ ~=: ;

~ 6 ‘– 2’6
And since-it Is assumed that

&=[l—(2@+1)T] :(1—T)2P+l=l,

there is obtained

Setting T=TO yields

%+% = ‘1 (1–70)–~—.
2 ~F3 L;5= ~; . (93’)

.

Turn now to formulas (“?1) and (8), ~art I, that give~
the derivatives of the coordinates with .respect to ~ and ~t

dx Coso dy sid
q—~~’ q=~a;

,,

h sine(l—~)–~ dy = cosO(l—T)–?_ ——
w

——
~T ‘w G“

whence, by taking into account (93) and setting
Cp+i$=w, q-i$=s w?

x+l~= %,
there is obtained:

2&$= Cle”+‘“+C2e-+ ‘!;2~a$ = i(Cle’’+;o—L’le-6+~o):

(94)

‘“””The’iritegriition now may be carried out; since -

WJ=t(a+N),w’=~;(G—i6),

w_here fl Is the” function conJugate to f.
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>.-
J.. , Consider, for example$ the approximate solation of the

problem of the pres”stird &Xerted”’on-a plat~-by aninfinite.
gas flow, or otherwise expressed, of the resistance of a
gas medfum to the motion of a plate. It is’ assumed here
that the direction of the flow forms a certain angle X
with the normal to the plate, By making use of the Joukov.L-
sky method the following solution of this problem for the
incompressible liquid is readily obtained$

Cosah
— = s&nA + Sin(o-id)

u

The regions of flow correspond, in this case, to the
upper half plane of the variable u. The boundaries’ il= 0,
which determine the streamlines CA and BD, correspond
to the segznents of the real axis of the u region from
u =+=$’to u = 1 * sil!l~ and from U = - ~ - sin~ to
u=-= the point u = Ace gives #=CJ,Q=_~* The
part of the plate where @ = w/2 corresponds to the segmeilt
of the real axis of the u plane bounded by the points
u= O and u = 1 - sin~~ finally, at the boundary 03
0 =-. w/2 and u varies from O to -1 - sink.

On the other hand, for u real *L Z8 Q and ~1
varies from O to + = as u varies from O to we ghe
imaginary ax$s of the” u region likewise gives Vz = O;

Q~ increases from _ ~ to O, while u runs through the

values from +Wi to 0; 4 and e vary correspondingly
within the limits O and + ~, - ~ and 00 It is clear,
from this, that the imaginary ax%s of the u half plane
corresponds in the plane of flow to the..streamline, ~0
branching at the plate into OAC and W),

On the basfs of the foregoing rule, the solution of
this problem of the gas flow is obtained by setting.

The expressions for the coordinates in terms of cr
anti 6 now will be sought. Turning for this purpose to
the last of formulas (94)

.-,.



E/ : ““----
—

2@z2=Clez+iew+C2e-u+iew’— c, fw&.t ‘“~(~+~e)+ , _ ,

+C2Jw’e-” ‘ied(6–iO).

Setting, for briefness , under the integral signs
.

e~+io~, o-fl+;8=t’,

and substituting the ●xpress ions for w and w ~ from (95)

— 4iic2cm4a
J

Integration yieldw

.

t’‘dt’
(2sinN’+&it”)2“

2JXiii=C,ea+‘“w+C2—r+iew’+2kcos~X Cl ‘tc!’s2A+‘in~+
2slnld+2-?t-

. + %COS%C : — 2ikcosAc~).~t$‘+isinA~2suM+i-it’ ) x—

— 2L%cosiCiarctJ -+L.

Or by substitution of the sum and difference of the
urc*angents in the foregoing equation and multiplication of
the entire equation by i:

cos2>—isinle--’8 * cos2A— isinle=—~o

“ “CQS’A_uiz~ – “cos ~‘sinX+sin@+i6J +

(96)

{

(e&+e-’)eio+2&inA CA
+ c%?(%+%)a~dg c0s2X+eaoi+isinA(eu+e-’)eei~ }+

,,,,,,

+ cofJx(c,–
[~a_&uje@ ‘“”~os;,’ ..

}
~ + Li.cJar@ {~_e~o~_;sin~(eq+e-’)e*i

Tt is not difficult to show that both arctangents exiter-
“ing the foregoing equation everywhere ~ary continuously; that
as u approaches =, whatever the ~alue of @e The first——--— — ——- — -
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of them approaches = ~ + A naqd the second - - A, and

- therefore, ‘-L-“~”thearbitra~y- tionstant’”of”int~giation)
may be determined so that for ~,=~,z=o,

It is noted. further that the first of these ar’ctan-
gents nowhere atta$ns the value l?/.2, since the denom-
inator of its a~gumeat nowhere becomes zero; the second
yasses through W/Z! on the curve defined .by the equation

2sin0 + sin~(e”+e-u) = O

The expression for the length of the plate 21 is
now set up, For this purpose, by formula (96) there is
determined 21 = -iz + iz2

i
equal to the difference in the

results of the subst tution in the expression -iz of the
values 0 = O, tl=7T/2 and a=O, 0=-n/2, It may be
noted that on the basis of what has been said of the vari-
atioil of the second arctapgent of formula (96)

/’
(ea-e-u)eie~os~

&rctg -v-----— ~-.-... =-~

i-ie’ei ei
~sinx( e“+e-ff)e

0’=0, 9+

The same substitution in the first of the arctangents
gives zero as a result? With this in mind, it is found,
after simple @eduction that:

21&a=4 Cl+c cl- 022 + TrcosA -—.——
‘k ?

2 ‘2

whence from forrnulq.s,(9?!),,,, ,,..8..,

~, & = 4 + WCOSA(l-TO)
-$——-.

k

Turn now to the ~Pmputation of the resultant force R
on the plate. For this purpose use is made of the formula

~----- —.., .,. ,,——. ! I II .!. . . ,, ------



.

lo4

>>.
.

where p. is the pressure at the critical point; it is

determined in terms of PI the’ pressurti behind tlqeplate
and prevailing over the entire gas med,ium at rest by the
formula

p+ 1

PO(HO) = P1

For determining R

where lx and ‘la denote the corresponding Ien”gthsof.
the parts of the plate (IAand OB from the critical point
to the ends,

BY carrying out the integration by parts there is
obtained

S~bstitute, in this expression, the variable ~; from
the relation between 7 and c (formulas (91) and (93)).

(1-?)Pd7 = 6- 2Tda = - —-— do

. {CX8*+ Cae-u)a
.

and the llmits of integration with respect to o are ~
and O: moreo+er it may’ be noted that -the first two terms
in the f f:ula for’ R cancel, s~nce

B
tx+ %2 = 21,

PO(I-TD) =,P~* Hence

L _. .— —- —
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.
-, or, integrating by parts,

+,[{(g) ‘-(g) },q$$~.
e= ~ e= —.:

2.

Substitution, gives the result 21/(c3+c J.

With regard to the remaining integral, b equatioa (94),’
if e = 17/2 and It Is remembered” here that $ = o

For e=- m/2, * = O there is obtained
— dy()c4/~a ~ — d~

)
(C1eu+C,e-U)(~ .

e-—-~ e-~.
Making use of these formulas and integrating again

by parts, in the expression for R, reduces it to the form

m

From equations (95) there Is
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and, therefore, by substitution, and introduction in the

Integral of-the variable- ~ = e-?,.tharo is obtained:

These definite integrals ‘have, respedtlvely, the values

and

and” hence, on adding, give

1

(

c
2c0s’1. )

—l+~A ;

Substitution of this expression in the formulator “R yields

C,Riiiia 414Z—- - ——
WJ+l)P”

—-—4k+zkcosl.
= C,+C2

Since

therefore

.*. ,,, ,.,. . .
From t’he formula ~u;t ~~~en for 2t:

(98)

), ,.

,/-) —------ . . — . . . ...
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1.

Moreover
.,

p=...

i
Y “’ ‘. -

‘Km a= ffipo

~~ . ..”.

P. = Xpo , (fl+l)l?o= —-
Y,- 1

= ap~ (1-TO)

Since from the definition” of the constant a (See pt. l.)

V-L
INp 0,

a = -——
‘Y-1

and the density at the jet surface pi,. equal to the
density of the distant regions of the flow, is connected
with the density at the critical point p. bv the foruula

~

P1 = po(l-lo)

,—-—

Finally by taking into account the equation J 2aTQ = ~.,
the velocity at the jet surface and at the infinitely dis-
tant yoints of the moving gas mass, there is obtained from
(98):

TlcosiR=”.-...- . . . ..-.-——2tvo2p1

4(1-To)@+ ncosA

Thisformula for ~ = O passes over, as it should,
into the formula of Lord Rayleigh for the flow of an in-
compressible liquidl and for h = O gives the approximate
solution of the problem of the pressure of a symmetrical gas.,.,

for the values of assumed at the beginning of this
‘6” “~p”a’r%~“~n-d-~$%,~.-w.hit-h,~~,i,s,.,..p,pLr~%}rnq t ej me=~ihod is applicable

and consi~~,ring only the case of symmetrical flo~” lead”s to
the follqwing result’: For a change in so from o to.— . .--.— — ——- —
1--- and flow velocity from’O tp 136 meters per second

12P ‘–- “-”- -“-”–--” ---” - - -— ------ ..—----.—-

th~ coeffio”ient
m

—~-m -.
--- --—--------

fluctuates within the limits ‘
*(~-To)E+m -----—----- ------ --- .—.—y—

,,,
‘‘:,
..

‘p
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*.. -. ,,s).940.t”oQ460, ,the increase at the end being greater--—-*- —- --- .......,,,

than at the beginning Thus ,for ,s = -~o and ‘o = 96
24B

meters per second it still equals only Q,449, Hence for
not v~ry large velocities the law of the proportionality
of the resistance to the square of’the velo,city is found
to be almost exact.

SUPPLEMENTARY

1*

RFAIARKS

Fart 17: It is of interest to note that the
Yn will always have real roots within the limits

variation of T from its critical value J’--- to
2f3+l

function
of the

1, pro-

vided n is sufficiently large. Thus for functions with
inte~ral n $t i$ true for n > 1, !Che number of roots
increases infinitely with n+ These results are obtained
from Porterts article (reference 12)4 It”is readily con--
eluded that the solution of the problems on the flow of a
gas out of a vessel and the resistance of a moving plate
in air, given in parts $11 and IV, are not applicable out-
side of the limits indicated in this paper because of thi
d;?ergence of the series expressing the stieam function
and velocity potential

2.

part Vt,_ The expression. K =[1 - (2@+l)T~(l_~)-2@-’
which, in presenting the napproximate method, m was accepted
as eqqtal to unity actually will be equal to unity in two
cases: “’

1, Tf @ = o: This is the case of the motion of an
incompressible liquid, since the formula for the ’density

,,‘P = po(l-?)~ reduces to the equation p = constant,
Yz.,>wwzme.-.,..... %.---. ..... .......... ..:, ,., , ... ,

2. If”p =-$:
l+:

In this case p = kp ~ =,k/~m If

the moving matter is a~ ideal gas, then in ord’er that this
condition may be satisfied, it is necessary, in some manner
to rezlove iihe heat $rorn the flbw$ng mass of gas,

s
To create
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such a state of mot~on of the gas is not actually possible.

-1
The problem, however, arrived at on setting P = - ,3 is of

interest from quite.another viewpoint,

The initial equations (7) of part I is considered. By

substitution in them for 7 its value k [(%y+ (*y]

2a equal to -1 $S taken and, for briefness, the derivatives -
of q? are denoted with respect to x and y by p and q,
respectively. The equations then become

~d,y- qdx
—-.—----
fi+p4+q3 = ‘$

-—=--

Hence it is clear that if we put q = z, then x,

Y, z will be the rectangular coordinates of the points
of a minimal surface-

Formulas (91) to (95) of part V, on substituting -U
for 7, lead to the following relations:

C1+C2 = --L, C1-C2 = /’-l+UOJXo ‘o-

where the arbitrary constants are given soinewhat different
values from thqse in the formulas of V,

“’” If u+”ie = tf (y- ia= tx.,, then .,....

z+illJ= f(t)
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~--
— -—

where
-.. ,.. ..- ., ..-

For the square of the linear element of the surface
there is found the expression

dsz = fc~e”’- c2f3-u)2(d~2 + d~’) = l+p’+q2------ (dz2+ d*2)”.

If the Xy plane is horizontal the curves z = constant
will be the horizontals of the surface; V = constant are
their orthogonal trajectories,

From the foregoing equations minimal surfaces of various
shapes may be derived.

10 Setting

f(t) - ent

yields

For n rational various shapes of algebraic surfaces
are thus obtained, An exception is the case n = 1,’ the
surface then being transcendental

Setting f(t) = At gives for real
and for A the helicoidc

A the catenoid

2, A second group of minimal surfaces obtained from
the above formulas is of much greater interest, With the
aid of the latter the minimal surface described within a

+-., c.ertai? G%X9.G Folygopal contour may be sought, The latter
should consist of horizontal and ‘v~rtical stra”igh’t-segments
(the xy plane as before is taken to be some horizontal
plane), On setting $or simplicity U. = ~ and hence
cl=-Ga=l/2 in the above formulas the following is
noted’: On each’horizontal Segment ‘of the boupdary “contour

.
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there will evidently be zx constant and 8 = c~n~tant;
,..

lf’~kbwever,- t-he-segme-n-t-.uncle.rcons-ideration $.svertical
then on it wz=+c:~stant, p? + qa = = and IJ= 0. Thus
the regions and 0+%0 will be bounded by
straight lines. By finding the conformal transformation
of these regi,ons on the upper half plane of the auxillary
complex variable SJ by the kn~wn method, the problem
to the effecting of qvadraturqs Is reduced, As a very
simple example, the surface desori%ed in a pentagonal
contouraf the .follow~ng shape i.sobtained; one of its
sides Is the segment of the y axis bisected by the origin
of eoor,dingtes; from the end of this segment are drawn “
two equal sides parallel tq the z ax$s: from the ends of
the latter two infinite lines parallel to the x axis are
drawn thus completing the contoury Th$s surface is ex-
pressed by the following equations:

a

f

-- —
2kisn ~ dn ~a. cn ~

Slnh 2X l-ka
---—. = - .-—-.-——z

a

a a

They are readily obtained with the aid of the pre-
ceding general formulas if

s

1’ 6s
Z+’i*= ai —..w-..-r4-

o dz-s’)(1-k’s’)
-.—--..-—-

?n.,cogclypbn, it may be noted that the given con--w ,.
ditions for the’ ‘su$~ake rna”yhe; soxiewhat varte’&, “Thus,
awoag the conditions, the requirement} that one of the
horizontals be a line of ourvature of the surface may be
include,d, The plane of this h~r$zontal will then intersect
the requ~red $ur$aae at “a eenstan”~ ‘angle and, there~ore, it “

—



,.

will be found that, for a certain given value ~f z,
---,P.2.,+.~z = constant- a-rid:hence. ..u..”=.c.ons.tanti? In exact,ly

the same way, if it is known that one of the curves;
W’= constant, is a plane curve, then, as is easily shown,
along this curve the angle 9 will be constant.,

Translation by S, Iieis:i
National Advisory Committee
for Aeronautics.
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